CHEM/VI/CC/16

Student's Copy

2023

(CBCS)

(6th Semester)

CHEMISTRY

NINTH PAPER

(Inorganic Chemistry—III)

Full Marks: 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION: A-OBJECTIVE)

(*Marks* : 10)

Tick (\checkmark) the correct answer in the brackets provided : $1 \times 10 = 10$

- **1.** Which one of the following compounds is not an organometallic compound?
 - (a) $(C_2H_5)_4Pb$ ()
 - (b) CH₃COONa ()
 - (c) $Fe(C_5H_5)_2$ ()
 - (d) $Mg(CH_3)_2$ ()

/398

- **2.** From which one of the following molecular orbitals CO donates an electron pair in the formation of OC M coordinate bond in metal carbonyls?
 - (a) Pi bonding MO ()
 - (b) Pi antibonding MO ()
 - (c) Sigma bonding MO ()
 - (d) Sigma antibonding MO ()
- 3. The metal ion present in deoxyhemoglobin is
 - (a) high spin (Fe(II)) ()
 - (b) low spin (Fe(II)) ()
 - (c) high spin (Fe(III)) ()
 - (d) low spin (Fe(III)) ()
- **4.** In carboxypeptidase, the ligands of Zn^2 ion are
 - (a) three N atoms of the three imidazole rings of histidine groups ()
 - (b) two N atoms of two imidazoles of histidine group and a glutamic acid()
 - (c) one N atom of imidazole of histidine group and two glutamic acids()
 - (d) two N atoms of two imidazoles of histidine group and two glutamic acid residues ()

5. In lanthanides, the last electron enters

- (a) np subshell()(b) $(n \ 1)d$ subshell()(c) $(n \ 1)f$ subshell()(d) $(n \ 2)f$ subshell()
- 6. Which one of the following ions is colourless?
 - (a) Lu³ ()
 - (b) Pr³ ()
 - (c) Dy³ ()
 - (d) Sm^3 ()
- 7. The magnetic permeability of paramagnetic substance is
 - (a) equal to zero ()
 - (b) slightly less than 1 ()
 - (c) equal to 1 ()
 - (d) slightly greater than 1 ()

/398

- **8.** The number of unpair electrons present in a d^7 , low spin octahedral complex is
 - (a) 0 ()
 - *(b)* 1 ()
 - (c) 2 ()
 - (d) 3 ()
- 9. The number of normal modes of vibration for SO_2 molecule is
- **10.** Which one of the following is expected to show the lowest M-X stretching frequency?
 - (a) $[A1F_4]$ ()
 - (b) $[AlCl_4]$ ()
 - (c) $[GaCl_4]$ ()
 - (d) $[GaBr_4]$ ()

(SECTION : B-SHORT ANSWER)

(Marks: 15)

Answer the following questions :

UNIT—I

1. Explain how back bonding stabilizes the -acid complexes.

OR

2. Explain how CO behaves as a -acid ligand.

UNIT—II

3. What are the biological processes where Ca^2 ion plays an important role?

OR

4. What are condensation polymers and addition polymers? Give examples.

UNIT—III

5. How does the lanthanide contraction affect the atomic size of heavier transition elements?

OR

6. Explain why the magnetic moments of lanthanides cannot be obtained from the spin-only formula.

UNIT—IV

- 7. Explain the following terms :
 - (a) Magnetic induction
 - (b) Bohr magneton
 - (c) Neel temperature

OR

8. What are the important properties of paramagnetic substances?

/398

[Contd.

 $3 \times 5 = 15$

UNIT-V

9. Differentiate between Rayleigh scattering and Raman scattering.

OR

10. Write at least three similarities of Raman spectroscopy and infrared spectroscopy.

(SECTION : C—DESCRIPTIVE)

(*Marks* : 50)

Answer the following questions :

Unit—I

- **1.** (a) How will you prepare the following compounds?3
 - *(i)* Fe(CO)₅
 - (ii) RMgX
 - (iii) $Fe_2(CO)_9$

(b) Write the uses of alkyl-boron in organic synthesis. 3

(c) Discuss the different types of bonds found in metal carbonyls. 4

OR

- **2.** (a) How will you prepare $Sn(CH_3)_4$? Also explain how organotin compounds are used as stabilizers of PVC. 1+2=3
 - (b) Explain the hybridization and structure of $Co_2(CO)_8$ in the solid state. 3
 - (c) Citing a suitable example, discuss the bonding in metal-alkene complex.

Unit—II

3. (a) Write one method of preparation of $(NPCl_2)_3$ and explain its structure.

1+2=3

10×5=50

- (b) Explain the functioning of carbonic anhydrase. 3
- (c) Discuss the cooperativity effect in hemoglobin. 4

OR

- 4. (a) Draw the structure of heme group present in myoglobin and write a brief note on the structure of myoglobin.3
 - (b) Write a short note on the role of sodium and potassium ions in biological systems.
 - (c) What are silicones? Discuss the method of preparation of a cross-linked silicone.

UNIT—III

5.	(a)	Give	reasons	why	the	separation	of	lanthanides	is	difficult.	3

- (b) Make a comparison of the oxidation states of lanthanides and actinides. 3
- (c) What is lanthanide contraction? What are its causes? 1+3=4

OR

6.	(a)	Write the valence shell electronic configurations of lanthanum,						
		gadolinium and lutetium.						
	(b)	Compare the complexation tendency of lanthanides and actinides.	3					
	(c)	Discuss how lanthanide ions are separated by ion-exchange method.	4					

UNIT-IV

7. (a)	Explain the shortcomings of Curie law and advantages of Curie-Weiss law.	3
(b)	Compare the magnetic properties of Ni^2 ions in tetrahedral and square planar complexes.	3
(c)	Draw plots of inverse of molar susceptibility versus temperature for paramagnetic, ferromagnetic and antiferromagnetic substances and explain the difference. 3+1	=4

OR

8.	(a)	Discuss the origin of the spin magnetic moment.	3
	(b)	Write a short note on ferromagnetism.	3
	(c)	Explain the magnetic properties of the following complex ions :	4
		(<i>i</i>) $[Co(CN)_6]^3$	

(ii) [FeF₆]⁺

UNIT-V

		AD					
	(c)	Give reasons why the N-H stretching frequencies of ammine complexes are lower than those of the free $\rm NH_3$ molecule.					
	(b)	What are the fundamental vibrations of $\rm CO_2$ molecule? Indicate whether they are IR and Raman active or not.	3				
9.	(a)	Differentiate between Stokes' lines and anti-Stokes' lines. Which one is having greater intensity and why?	3				

OR

10.	(a)	What are the factors o	n which th	e intensity of a Rama	an peak depends?	4
TO .	(0)	what are the factors o		ic interiorey of a Raine	in peak acpentas.	

- (b) Arrange the given species in the increasing order of their Fe-X stretching frequency and give reasons to support your answer : 3
 - (i) [FeCl₄]
 - (ii) [FeBr₄]
 - (iii) $[\text{FeBr}_4]^2$
- (c) What is the mutual exclusion principle? Explain how it can be used for the structural elucidation of N_2O molecule. 1+2=3

* * *