PHY/II/EC/03

Student's Copy

2023

(CBCS)

(2nd Semester)

PHYSICS

SECOND PAPER

(Thermodynamics and Mathematical Physics—I)

Full Marks: 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A—OBJECTIVE)

(*Marks* : 10)

Tick (\checkmark) the correct answer in the brackets provided : $1 \times 10 = 10$

- **1.** The density of hydrogen at NTP is 0.000089 g/cc. Then r.m.s. velocity of hydrogen is
 - (a) $1 \ 8 \ 10^5 \ \mathrm{cm/s}$ ()(b) $1 \ 8 \ 10^3 \ \mathrm{cm/s}$ ()(c) $3 \ 2 \ 10^5 \ \mathrm{cm/s}$ ()(d) $3 \ 2 \ 10^3 \ \mathrm{cm/s}$ ()
- **2.** In an Ingen-Hauz experiment, wax melted over 10 cm of Cu rod and over 4 cm of Fe rod. If the thermal conductivity of Cu is 0.90, then the thermal conductivity of Fe is

(a)	0.36	()	(b)	2.25	()
(c)	5.625	()	(d)	0.144	()

/274

3. Let V_i and V_f be the initial and final volume of one mole of a perfect gas. Then work done *W* at constant temperature *T* is

(a)
$$W P(V_f V_i)$$
 () (b) $W P(V_i V_f)$ ()
(c) $W RT \log_e \frac{V_f}{V_i}$ () (d) $W RT \log_e \frac{V_i}{V_f}$ ()

- **4.** In a reversible isobaric-adiabatic process, which of the following remains constant?
 - (a) Gibbs function ()
 - (b) Enthalpy ()
 - (c) Helmholtz function ()
 - (d) Internal energy ()

5. For any vector \vec{a} , the value of \hat{i} $(\vec{a} \ \hat{i})$ \hat{j} $(\vec{a} \ \hat{j})$ \hat{k} $(\vec{a} \ \hat{k})$ is (a) \hat{a} (b) \vec{a} (c)

(c) $2\vec{a}$ () (d) 0 ()

6. If $\vec{r} = x\hat{i} = y\hat{j} = z\hat{k}$, then $\vec{r}(r^2)$ is equal to (a) \vec{r} () (b) $2\vec{r}$

(c) r^2 () (d) $2r^2$ ()

7. Let A $[a_{ij}]$ be an m n matrix. Then which of the following are true?

()

- (*i*) $(A^{\dagger})^{\dagger} = \overline{\{(\overline{A})^t\}^t}$
- (*ii*) $(A^{\dagger})^{\dagger}$ $(\overline{\overline{A}})$
- (*iii*) $(A^{\dagger})^{\dagger}$ A
- (a) (i) and (ii) ()
- (b) (ii) and (iii) ()
- (c) (i) and (iii) ()
- (d) (i), (ii) and (iii) ()

/274

- **8.** Let A be an orthogonal matrix, a characteristic root of A and X the corresponding characteristic vector. Then
- **9.** The value of $(2 \ m) \ (1 \ m)$ is
 - (a) $\frac{m}{\sin m}$ () (b) $\frac{m}{\sin m}$ () (c) $\frac{(m \ 1)}{\sin m}$ () (d) $\frac{m(m \ 1)}{\sin m}$ ()
- **10.** The integral $\int_{0} e^{x^{2}} dx$ is equal to
 - (a) $\sqrt{}$ () (b) $\frac{\sqrt{}}{2}$ () (c) () (d) $\frac{}{2}$ ()

(SECTION : B-SHORT ANSWER)

Answer the following in brief :

UNIT—I

1. Define Boyle's temperature $(T_{\rm B})$. Show that $T_{\rm B} = \frac{a}{Rb}$, where *a*, *b* are van der Waals' constants.

OR

2. Define degrees of freedom. Show that for a gas possessing f degrees of freedom, the ratio of specific heats () is equal to $1 \quad \frac{2}{f}$.

/274

[Contd.

3×5=15

Unit—II

3. Define adiabatic process. Explain why the temperature of a gas drops during an adiabatic expansion.

OR

4. State Carnot's theorem. "Efficiency of a Carnot's engine is always less than one." Explain.

UNIT—III

5. Show that \vec{A} (\vec{A}) (\vec{A}) (\vec{A}) (\vec{A}), where is a scalar and \vec{A} is a vector field.

OR

6. Show that the vector \vec{A} $z\sin \hat{e} z\cos \hat{e} \cos \hat{z}$ is solenoidal.

UNIT—IV

7. Show that the matrix $B^{\dagger}AB$ is Hermitian or skew-Hermitian according as *A* is Hermitian or skew-Hermitian.

OR

8. Show that the necessary and sufficient condition for a square matrix to be invertible is that it is non-singular.

UNIT-V

9. Show that $\int_{0}^{1} \frac{x^{m-1}(1-x)^{n-1}}{(a-x)^{m-n}} dx = \frac{(m, n)}{a^n (1-a)^m}$, where the symbols have their usual meanings.

OR

4

10. Show that $\int_{0}^{1} x^{m-1} (1 x^{a})^{n} dx = \frac{1}{a} - \frac{\frac{m}{a} n!}{\frac{m}{a} n - 1}$, where the symbols have

their usual meanings.

/274

(SECTION : C-DESCRIPTIVE)

(Marks:50)

Answer the following questions :

UNIT-I

- 1. (a) Derive the general equation representing the rectilinear flow of heat along a bar of uniform cross-sectional area. Hence, obtain an expression for excess temperature for a bar of infinite length at a point distant x from the hot end after the steady state is reached. 4+3=7
 - (b) An icebox is built of wood of thickness 1.75 cm, lined inside with cork of thickness 3 cm. If the temperature of the inner surface of the cork is 0 °C and that of the outer surface of wood is 12 °C, calculate the temperature of the interface. (Given : Thermal conductivities of wood and cork are 0.0006 and 0.00012 cgs units)

OR

- 2. (a) Discuss kinetic interpretation of temperature. Hence show that the root-mean-square velocity of a gas is directly proportional to the root of its absolute temperature. 3+1=4
 - (b) The number of molecules per cc. of a gas is $27 ext{ 10}^{19}$ at NTP. Calculate the number of molecules per cc. of the gas at 0 $^{\circ}$ C and 10 6 mm pressure of Hg.
 - (c) The critical temperature and critical pressure of CO_2 are 31 °C and 73 atm respectively. Assuming that CO_2 obeys van der Waals' equation, compute the critical volume of CO_2 and estimate the diameter of CO_2 molecule.

UNIT-II

3. (a) State the zeroth law of thermodynamics. Hence derive the equation of 1+3=4state.

5

(b) Using the first law of thermodynamics, derive the adiabatic equation of state for a perfect gas. 3

[Contd.

2

10×5=50

4

3

(c) A Carnot's engine whose low-temperature reservoir is at 7 °C has an efficiency of 50%. By how much °C, the temperature of the high-temperature reservoir should be raised to increase the efficiency to 70%?

OR

- 4. (a) Discuss the thermodynamic or work scale of temperature. Hence define the absolute zero temperature.4+1=5
 - (b) Show that Helmholtz free energy remains constant during an isothermal isochoric process.
 - (c) Explain the principle of increase of entropy.

UNIT—III

- **5.** (a) Find the directional derivative of $x^2yz + 4xz^2$ at (1, 2, 1) in the direction of $2\hat{i} + \hat{j} + 2\hat{k}$.
 - (b) Transform the vector \vec{A} $x\hat{i}$ $2z\hat{j}$ $y\hat{k}$ to cylindrical coordinate system. 3
 - (c) Define symmetric and skew-symmetric tensors. Show that the components of a contravariant tensor of rank 2 can be expressed as the sum of a symmetric contravariant tensor and a skew-symmetric contravariant tensor, both of rank 2.

OR

- **6.** (a) Show that the vector $\vec{A} = \frac{\vec{r}}{r}$, where $\vec{r} = x\hat{i} = y\hat{j} = z\hat{k}$ and $r = |\vec{r}|$ is irrotational.
 - (b) Represent the vector $\vec{F} = y\hat{i} + z\hat{j} + x\hat{k}$ in spherical polar coordinate system.
 - (c) Define contravariant tensor. Show that the velocity of the fluid at any point is component of a contravariant vector.2+2=4

3

2

3

UNIT—IV

(U)	Define symmetric a symmetric matrices A and B commute.	nd sk . Thei	xew-syr 1 show	nmetric that 2	c matrix. AB is syn	Let A a nmetric	if and <i>B</i> be two if and only if 1+1+	2=4
(b)	Show that any tw eigenvalues of Herm	vo ei nitian	genvec matrix	tors co are or	orrespond thogonal.	ling to	two distinct	3
(c)	Using matrix metho	d, sol	ve the	system	n of equa	tions		
	x y z	6, <i>x</i>	y 2	z 2 an	ad $2x y$	z 1		3
			C	R				
(a)	Define Hermitian and skew-Hermitian matrix. Show that every square matrix A can be uniquely expressed as the sum of a Hermitian and a skew-Hermitian matrix. $1+1+2=4$							
(00)	matrix <i>A</i> can be un a skew-Hermitian m	iquely natrix.	y expre	essed a	s the sur	n of a H	every square Iermitian and 1+1+	2=4
(b)	matrix <i>A</i> can be un a skew-Hermitian m Find the value of	iquely natrix. for w	hich the	he mat	natrix. Si s the sur rix	n of a H	every square Iermitian and 1+1+	2=4
(b)	matrix <i>A</i> can be un a skew-Hermitian m Find the value of	iquely natrix. for w	hich the cos	he mat sin	rix 0	n of a H	Iermitian and 1+1+	2=4
(b)	matrix <i>A</i> can be un a skew-Hermitian m Find the value of	iquely natrix. for w	hich the cos	he mat sin cos	rix 0 0	n of a H	Iermitian and 1+1+	2=4
(b)	matrix <i>A</i> can be un a skew-Hermitian m Find the value of	iquely natrix. for w A	hich th cos sin 0	he mat sin cos 0	rix 0 0	n of a H	Iermitian and 1+1+	2=4
	(b) (c)	 (b) Show that any two eigenvalues of Herm (c) Using matrix method x y z 	 (b) Show that any two ei eigenvalues of Hermitian (c) Using matrix method, sol x y z 6, x 	 (b) Show that any two eigenvec eigenvalues of Hermitian matrix (c) Using matrix method, solve the x y z 6, x y z 	 (b) Show that any two eigenvectors c eigenvalues of Hermitian matrix are of (c) Using matrix method, solve the system x y z 6, x y z 2 an OR (a) Define Hermitian and chem Hermitian contacts and con	 (b) Show that any two eigenvectors corresponde eigenvalues of Hermitian matrix are orthogonal. (c) Using matrix method, solve the system of equation x y z 6, x y z 2 and 2x y 	 (b) Show that any two eigenvectors corresponding to eigenvalues of Hermitian matrix are orthogonal. (c) Using matrix method, solve the system of equations x y z 6, x y z 2 and 2x y z 1 	 symmetric matrices. Then show that AB is symmetric if and only if A and B commute. 1+1+ (b) Show that any two eigenvectors corresponding to two distinct eigenvalues of Hermitian matrix are orthogonal. (c) Using matrix method, solve the system of equations x y z 6, x y z 2 and 2x y z 1 OR

(c) If A and B are two non-singular square matrices of order n, then show that

$$(AB)^{1} B^{1}A^{1}$$
 3

UNIT-V

9. (a) Using the expression for (n), show that

$$\frac{1}{2}$$
 $\sqrt{}$ 4

(b) Show that

$$(m, n) \quad \frac{(m-1)!(n-1)!}{(m-n-1)!} \quad \frac{(m)}{(m-n)}$$
3

/274

(c) Show that

$${}_{0} \frac{y^{m-1}}{(1-y)^{m-n}} dy - \frac{(m)}{(m-n)}$$
3

OR

10. (*a*) Show that

$${}_{0} \frac{y^{m-1}}{(1-y)^{m-n}} dy {}_{0} \frac{y^{m-1}}{(1-y)^{m-n}} dy (m, n)$$

(b) Prove that

$$\int_{0}^{1} \frac{35x^{3}}{32\sqrt{(1-x)}} dx \quad 1$$
 3

(c) Show that

$$\int_{0}^{/2} \sin^{p} \cos^{q} d = \frac{\frac{p}{2}}{\frac{p}{2}} \frac{\frac{q}{2}}{\frac{p}{2}} \frac{q}{2} \frac{1}{2} \frac{q}{2} \frac{1}{2} \frac{p}{2} \frac{q}{2} \frac{1}{2} \frac{p}{2} \frac{q}{2} \frac{1}{2} \frac$$

* * *

/274