2025

(NEP-2020)

(4th Semester)

PHYSICS (MAJOR/MINOR)

(Modern Physics)

Full Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick (✓) the correct answer in the brackets provided :

 $1 \times 10 = 10$

- 1. According to Bohr's postulate, an electron of mass m moving in a circular path of radius r with velocity v will satisfy the relation
 - (a) $\frac{mv}{r} = \frac{nh}{2\pi} \qquad ()$
 - (b) $\frac{mv}{r} = \frac{2\pi}{nh}$ ()
 - (c) $mvr = \frac{2\pi}{nh}$ ()
 - (d) $mvr = \frac{nh}{2\pi}$ ()

where n = 1, 2, 3, ... is called the principal quantum number.

2. Which of the following sets of quantum numbers is not possible?

(a)
$$n = 4$$
, $l = 1$, $m_l = 0$, $m_s = +\frac{1}{2}$ ()

(b)
$$n = 4$$
, $l = 3$, $m_l = -3$, $m_s = -\frac{1}{2}$

(c)
$$n = 4$$
, $l = 1$, $m_l = 2$, $m_s = -\frac{1}{2}$ ()

(d)
$$n = 4$$
, $l = 0$, $m_l = 0$, $m_s = -\frac{1}{2}$ ()

- 3. In continuous X-ray spectra, the Duane-Hunt law specifically describes which of the following relationships?
 - (a) Generation of low-energy (soft) X-rays ()
 - (b) The minimum wavelength of X-rays produced as a function of the accelerating voltage ()
 - (c) Electron transitions between atomic orbitals ()
 - (d) Ionization of gases by positive rays ()
- 4. As the temperature of a blackbody is increased, the peak in the blackbody spectrum
 - (a) remains the same for all temperatures ()
 - (b) shifts to higher frequency ()
 - (c) shifts to lower frequency ()
 - (d) does not depend on temperature, but depends on the material of the body only ()

5.	bla	hich law states that the total energy radiated per unit surface area of a ackbody is directly proportional to the fourth power of its absolute apperature?
	(a)	Wien's displacement law ()
	(b)	Kirchhoff's law ()
	(c)	Stefan-Boltzmann law ()
	(d)	Planck's law ()
6.	Th	e de Broglie wavelength of a body of mass m and kinetic energy E is
	(a)	$\frac{2mh}{\sqrt{E}}$ ()
	(b)	$\frac{h}{\sqrt{2mE}}$ ()
	(c)	$\frac{\hbar}{\sqrt{2mE}}$ ()
	(d)	$\frac{2m\hbar}{\sqrt{E}}$ ()
	Which experiment provides the first experimental evidence for the wave nature of electrons?	
	(a)	Millikan's oil-drop experiment ()
	(b)	Davisson-Germer experiment ()
	(c)	Rutherford's alpha scattering experiment ()

(d) Young's double-slit experiment

- 8. According to Einstein's special theory of relativity, which of the following is true about time dilation?
 - (a) A moving clock ticks faster than a stationary clock ()
 - (b) Time dilation occurs solely in non-inertial frames ()
 - (c) A stationary observer measures a moving clock as ticking more slowly

 ()
 - (d) Time dilation is influenced by the gravitational field ()
- According to Dulong and Petit's law, the molar-specific heat capacity of a solid at high temperature is approximately
 - (a) 3R ()
 - (b) 5R ()
 - (c) R ()
 - (d) 2R ()
- 10. The Fermi velocity (v_F) of electrons in a metal is related to the Fermi energy (E_F) by the equation
 - (a) $E_F = \frac{1}{2} m_e v_F^2$ ()
 - (b) $E_F = m_e v_F^2$ ()
 - (c) $E_F = \frac{2}{3} m_e v_F^3$ ()
 - (d) $E_F = \frac{1}{2} m_e v_F^3$ ()

(SECTION : B-SHORT ANSWERS)

(Marks : 15)

Answer five questions, taking at least one from each Unit:

 $3 \times 5 = 15$

UNIT-I

- 1. Differentiate between hard and soft X-rays in terms of energy, wavelength and penetration power.
- State Hund's rule and provide an example of its application in electronic configuration.

UNIT-II

- 3. State and explain Kirchhoff's law of thermal radiation.
- 4. State and explain the Stefan-Boltzmann law in relation to thermal radiation.

UNIT—III

- 5. Derive the relationship between Group velocity (v_g) and Phase velocity (v_p) .
- 6. An electron travels at a velocity of 6.6×10^4 m/s with a measurement precision of 0.02%. Calculate the minimum uncertainty in the electron's position using the electron's mass $(m = 9.1 \times 10^{-31} \text{ kg})$ and Planck's constant $(h = 6.6 \times 10^{-34} \text{ J-s})$.

UNIT—IV

- 7. What is the Wiedemann-Franz law?
- 8. Write a short note on Dulong and Petit's law for the specific heat of solids.

(SECTION : C-DESCRIPTIVE)

(Marks: 50)

Answer five questions, taking at least one from each Unit :

10×5=50

UNIT-I

- Describe the experimental setup and methodology of Millikan's oil-drop experiment. Using Stokes' law, derive the expression for the elementary charge (e).
- 2. Outline the fundamental postulates of Bohr's atomic model. Using these postulates, mathematically derive the expressions for the radius (r_n) , orbital velocity (v_n) and energy (E_n) of an electron in the nth orbit of a hydrogen-like atom.

UNIT-II

- 3. What is Planck's law of radiation? Derive Planck's formula for energy distribution in the black-body spectrum.
- Explain Wien's displacement law and derive it from Planck's law. The peak wavelength of the star Sirius is approximately 290 nm. Calculate its surface temperature.

UNIT-III

- Derive the Lorentz transformations from Einstein's postulates. Use these transformations to explain time dilation.
- Discuss the Davisson-Germer experiment. Determine the anticipated wavelength of an electron by applying de Broglie's formula.

UNIT-IV

- 7. Show how Debye's approximation for phonons leads to the T^3 scaling of specific heat in solids in the low-temperature limit.
- Calculate the density of states (DoS) for electrons in one-dimensional and three-dimensional systems.

* * *