2	O	2	5	

(NEP-2020)

(2nd Semester)

PHYSICS (MAJOR/MINOR)

(Basic Electronics)

Full Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick (✓) the correct answer in the brackets provided:

 $1 \times 10 = 10$

- 1. The reverse saturation current across a p-n junction is due to
 - (a) minority carriers (
 - (b) majority carriers ()
 - (c) depletion width ()
 - (d) junction capacitance (

2.	Rip	ple factor	of a	half-wave rectifier is
	(a)	1.21	()
	(b)	1.11	()
	(c)	0.48	()
	(d)	0.81	()
3.	A p	-n junction	that	absorbs light energy to produce current is called a/an
	(a)	LED	()
	(b)	photodioc	le	(·)
	(c)	tunnel di	ode	()
	(d)	Zener dio	de	()
4.	In I	P-N-P trans	sistor,	, doping concentration is highest in the
	(a)	P-region	()
	(b)	N-region	()
	(c)	collector	()
	(d)	emitter	())

5.		CB config side of V_{CE}				_	charact	eristics,	the region	on the
	(a)	input regio	on	()	*				
	(b)	active regi	on	()					
	(c)	cut-off reg	ion	()					
	(d)	saturation	regio	on	()				
		2								
6.	DC	loadline of	fa tr	ansist	or is	a straigh	t line dr	awn in g	graph bety	veen
	(a)	I_C and V_C	CB	()					
	(b)	I_E and V_0	СВ	()					
	(c)	I_C and V_C	CE	()					
	(d)	V _{CE} and	V_{CB}	()					
7	. Th	e efficiency	of a	class	A am	nplifier is				
	(a)	25%	()						N.
	(b)	35%	()						
	(c)	40%	()			*			
	(d) 60%	()						

/635

8.	in a	an amplifier, the negative fe	edback	results in
	(a)	increase in voltage gain	()
	(b)	decrease in voltage gain	()
	(c)	increase in current gain	()
	(d)	decrease in bandwidth	()	
9.	_	oscillator uses a capacitiv	e volta	ge divider to provide feedback.
	(a)	Colpitts ()		
	(b)	Hartley ()		
	(c)	Phase-shift ()		
	(d)	Cross-coupled ()		
10.	The	e output from CRO is display	ed in	
	(a)	4-dimensional ()		
	(b)	3-dimensional ()		
	(c)	2-dimensional ()		
	(d)	1-dimensional ()		

(SECTION : B-SHORT ANSWERS)

(Marks: 15)

Answer five questions, taking at least one from each Unit :

 $3 \times 5 = 15$

UNIT-I

- 1. Explain the significance of forbidden energy gap in brief.
- 2. Discuss the formation of n-type semiconductor.

UNIT-II

- 3. Explain the operating point of a transistor with a neat diagram.
- 4. Prove the relation, $\alpha = \frac{\beta}{1+\beta}$, where the symbols have their usual meanings.

UNIT-III

- 5. Mention the components and key features of class B amplifier.
- 6. Write the advantages of negative feedback of an amplifier.

UNIT-IV

- 7. Mention the Barkhausen's criterion required for self-sustained oscillations.
- 8. Explain the construction of CRT in CRO.

(SECTION : C-DESCRIPTIVE)

(Marks: 50)

Answer	five questions, taking at least one from each Unit:	×5=50					
Unit—I							
1. (a)	Explain the formation of depletion layer and barrier voltage in punction diode.	p-n 6					
(b)	With a neat diagram, illustrate the working of full-wave rectifier.	4					
2 . (a)	Explain in detail the construction, working and application of Zendiode.	ner 6					
(b)	Describe the principle of filtering action of L-filter and C-filter.	4					
	Unit—II						
3. (a)	Illustrate with proper diagram, the construction and working of a N-P-N transistor.	an 4					
(b)	What are the three types of configurations in a transistor? Explain the effect of different $V_{\rm CE}$ values in input characteristics of Configuration of an N-P-N transistor.	he CE 6					
4. (a)	Explain active region, saturation region and cut-off region in outport characteristics of CB configuration of a P-N-P transistor.	ut 6					
(b)	Write a note on voltage and power gains of a transistor.	4					
	Unit—III						
5. (a)	What is a multistage transistor amplifier? Draw the circuit diagram two-stage R-C coupled amplifier and explain its operation.	of 6					
(b)	With neat diagram, describe the working principle of class B push-push-push-push-push-push-push-push-	ıll 4					

6.	(a)	What is distortion? Mention the causes and reduction of distortion in an amplifier.	6
	(b)	How does negative feedback affect the gain and stability of an amplifier?	4
		Unit—IV	
7.	(a)	Explain the construction and operation of phase-shift oscillator.	5
	(b)	Write the applications of CRO. Explain the measurement of frequency using CRO.	5
8.	(a)	Describe electron gun and explain electrostatic focusing in CRO.	5
	(b)	Illustrate in detail Hartley oscillator using appropriate circuit diagram.	5