MATH260 (MAJOR)

Student's Copy

2025

(NEP-2020)

(4th Semester)

MATHEMATICS (MAJOR)

(Real Analysis)

Full Marks : 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick I the correct answer in the boxes provided :

1. Let $S_n = \left[a + \frac{2}{n}, a + 3\right], n \in \mathbb{N}, \forall a \in \mathbb{R}$. Then $\bigcup_{n \in \mathbb{N}} S_n$ is

(a) closed but not open

(b) neither closed nor open

(c) open but not closed

(d) both closed and open

/632

[Contd.

1×10=10

2. Let S' denote the derived set of a set S and \overline{S} denote the closure of S, then

- (a) $\overline{S}' = S'$
- (b) $\overline{S}' = S \square$ (c) $\overline{S}' = \overline{S} \square$
 - (d) $\overline{S}' = \emptyset$

3. Which of the following sets is an open set?

(a) The set of rational numbers □
(b) The set S = {1/n : n ∈ N, the set of natural numbers} □
(c) The closed interval [a, b] □
(d) The subset S = {(x, y) : x² + y² < 1, x, y ∈ ℝ} of ℝ² □

4. Which of the following functions is continuous at (0, 0)?

(a)
$$f(x, y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

(b)
$$f(x, y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

(c)
$$f(x, y) = \begin{cases} \frac{x^2 - x\sqrt{y}}{x^2 + y}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

(d)
$$f(x, y) = \begin{cases} \frac{x^4 - y^4}{x^4 + y^4}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

/632

5.	Every continuous function with a closed and bounded domain in \mathbb{R}^n is													
	(a) bounded and attains its bounds \Box													
	(b) unbounded and does not necessarily attain its bounds \Box													
	(c) bounded and does not necessarily attain its bounds \Box													
	(d) unbounded and attains its bounds													
6.	Let f be a real-valued function with an open domain in \mathbb{R}^n . Then the function admits of directional derivatives at every point where													
	(a) it is continuous													
	(b) it possesses continuous first-order partial derivatives \Box													
	(c) it possesses second-order partial derivatives \Box													
	(d) it possesses <i>n</i> th-order partial derivatives \Box													
7.	Let $u = x + y - z$, $v = x - y + z$, $w = x^2 + y^2 + z^2 - 2yz$. Then the value of $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ is													ie of
	(a)	хy					383							
	(Ь)	xyz												
	(c)	0												
	(d)	1												

/632

4

(d) not a critical point

(SECTION : B-SHORT ANSWERS)

(Marks: 15)

Answer five questions, taking at least one from each Unit :

UNIT-I

1. Prove that the interior of a set S is the largest open subset of S.

Prove that the derived set of a set is closed.

Unit—II

- Prove that the image of a compact set under a continuous function is compact.
- 4. Let $f: D \to \mathbb{R}$, $D \subseteq \mathbb{R}^n$. Then prove that f is continuous if and only if for every sequence $\{x_n\}$ in D converging to x_0 , $f(x_n)$ also converges to $f(x_0)$.

UNIT-III

5. Find the directional derivative of $f(x, y) = x^2y^3 - y^4$ at the point (2, 1) in the direction of $\theta = \frac{\pi}{4}$.

6. If
$$u = x + y + z$$
, $u^2v = y + z$, $u^3w = z$, show that $\frac{\partial(u, v, w)}{\partial(x, y, z)} = \frac{1}{u^5}$.

- 7. Prove that the function $f(x, y) = x^2 2xy + y^2 + x^4 + y^4$ has a minima at the origin.
- 8. Using Taylor's theorem, find the expansion of $f(x, y) = \sin 2x + \cos y$ about the origin up to the second degree.

[Contd.

3×5=15

(SECTION : C-DESCRIPTIVE)

(Marks : 50)

Answer five questions, taking at least one from each Unit : 10×5=50

Unit—I

- 1. (a) State and prove Bolzano-Weierstrass theorem. Show by example that boundedness is not a necessary condition for an infinite set to have a limit point.
 - (b) If a sequence of closed intervals $[a_n, b_n]$ is such that

$$[a_{n+1}, b_{n+1}] \subset [a_n, b_n] \text{ and } \lim_{n \to \infty} (a_n - b_n) = 0$$

- then prove that there is one and only one point common to all the intervals.
- 2. (a) State and prove Heine-Borel theorem.
 - (b) Prove that a subset S of \mathbb{R}^n is closed if and only if its complement is open.

Unit—II

- **3.** (a) Define uniform continuity of a function in \mathbb{R}^n . Prove that a function continuous on a compact set is uniformly continuous. 1+5=6
 - (b) Show that the function

$$f(x, y) = \begin{cases} \frac{2x^4 + 3y^4}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

is continuous at (0, 0).

/632

Contd.

4

6

4

4

б

- **4.** (a) Prove that a function $f: D \to \mathbb{R}$, $D \subset \mathbb{R}^n$ is continuous if and only if $f^{-1}(U)$ is open in D for every open set U in \mathbb{R} .
 - (b) Let $f: D \to \mathbb{R}$, $D \subset \mathbb{R}^n$, where D is a convex set. Show that f assumes every value between f(x) and f(y), $\forall x, y \in D$. 5

Unit—III

5. (a) If the roots of the equation in λ given by

$$(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3 = 0$$

are u, v, w, then prove that

$$\frac{\partial(u, v, w)}{\partial(x, y, z)} = -\frac{2(x - y)(y - z)(z - x)}{(u - v)(v - w)(w - u)}$$

(b) If f_x exists throughout a neighbourhood of a point (a, b) in some domain in \mathbb{R}^2 and $f_y(a, b)$ exists, then prove that for any point (a + h, b + k) of this neighbourhood

$$f(a + h, b + k) - f(a, b) = hf_x(a + \theta h, b + k) + k\{f_u(a, b) + \eta\}$$

where $0 < \theta < 1$ and η is a function of k which tends to 0 with k.

- **6.** (a) Prove that a function which is differentiable at a point possesses the first-order partial derivatives at that point but the converse is not necessarily true.
 - (b) Show that the function

$$f(x, y) = \begin{cases} (x+y)\sin(\frac{1}{x+y}), & x+y \neq 0\\ 0, & x+y = 0 \end{cases}$$

is continuous at (0, 0) but its first-order partial derivatives do not exist at (0, 0).

/632

Contd.

4

5

6

5

UNIT-IV

- 7. (a) State and prove Young's theorem.
 - (b) State Taylor's theorem for two variables. Hence, show that for $0 < \theta < 1$

$$\sin x \sin y = xy - \frac{1}{6} \{ (x^3 + 3xy^2) \cos(\theta x) \sin(\theta y) + (y^3 + 3x^2y) \sin(\theta x) \cos(\theta y) \}$$
 1+3=4

- 8. Examine any two of the following functions for extreme values : 5×2=10
 - (i) $f(x, y) = \frac{x^3}{3} + y^2 + 2xy 6x 3y + 4$ (ii) $f(x, y) = x^2y^2 - 5x^2 - 8xy - 5y^2$ (iii) $f(x, y) = 4x^2 - xy + 4y^2 + x^3y + xy^3 - 4$

1+5=6

7