MATH161(MAJOR/MINOR)

Student's Copy

2025

(NEP-2020)

(2nd Semester)

MATHEMATICS

(Major/Minor)

(Algebra)

Full Marks : 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick (✓) the correct answer in the brackets provided : 1×10=10

1. If f(x) is divided by ax + b, then the remainder is

(a)
$$f\left(\frac{b}{a}\right)$$
 ()
(b) $f\left(-\frac{b}{a}\right)$ ()
(c) $f\left(\frac{a}{b}\right)$ ()
(d) 0 ()

/629

- 2. If the expression $x^5 61x + p$ is divisible by (x + 1), then the value of p is
 - (a) 62(b) 60()(c) -60()(d) 6()
- 3. If a polynomial f(x) of degree $n \ge 2$ is divisible by $(x \alpha)^2$, then the remainder is
 - (a) $(x-\alpha)f(\alpha) + f'(\alpha)$ ()
 - (b) $(x-\alpha)f'(\alpha) + f(x)$ ()
 - (c) $(x-\alpha)f'(\alpha) + f(\alpha)$ ()
 - (d) $(x-\alpha)f(\alpha)$ ()
- 4. For the equation $x^3 7x^2 + 15x 9 = 0$
 - (a) 2 is a root of multiplicity 2 ()
 - (b) 3 is a root of multiplicity 1 ()
 - (c) 2 is a root of multiplicity 3 ()
 - (d) 3 is a root of multiplicity 2 ()
- 5. Every equation of an odd degree has at least
 - (a) 1 real root ()
 - (b) 2 real roots ()
 - (c) 3 real roots ()
 - (d) None of the above ()
- 6. The equation $4x^3 13x^2 31x + 41 = 0$ has
 - (a) three positive roots ()
 - (b) one positive root which lies between 0 and 1 ()
 - (c) no positive root ()
 - (d) only one positive root which lies between 1 and 2

(

)

7. The equation $x^4 - 2x^3 - 1 = 0$ has

- (a) at least two imaginary roots ()
- (b) more than one positive root ()
- (c) more than one negative root ()
- (d) four real roots ()

8. The sum of two roots of the equation $x^3 - px^2 + qx + r = 0$ is zero, then

- $(a) \quad p = q \qquad ()$
- (b) pr = q ()
- $(c) \quad pq = r \qquad ()$
- (d) pq + r = 0 ()

9. The cube roots of unity are

(a) 2, 2 ω , 2 ω^2 () (b) 1, ω , ω^2 () (c) -2, -2 ω , -2 ω^2 () (d) None of the above (

10. The complex number (3-4i) in De Moivre's form is

(a) $5(\cos\theta + i\sin\theta)$ () (b) $5(\cos\theta - i\sin\theta)$ () (c) $3(\cos\theta + i\sin\theta)$ () (d) $4(\cos\theta - i\sin\theta)$ ())

UNIT—III

- 5. (a) Find the necessary condition for the roots of the equation $x^3 px^2 + qx r = 0$ to be in—
 - (i) arithmetic progression;
 - (ii) geometric progression;
 - (iii) harmonic progression.
 - (b) Diminish the roots of the equation $x^4 4x^3 + 3x^2 + 3x + 7 = 0$ by 1. 4
- 6. (a) If the polynomial $x^4 + px^2 + qx + r$ has a factor of the form $(x \alpha)^3$, then show that $8p^3 + 27q^2 = 0$.
 - (b) If α , β , γ are the roots of $x^3 px^2 + qx r = 0$, then find the equation whose roots are $\beta\gamma + \frac{1}{\alpha}$, $\gamma\alpha + \frac{1}{\beta}$, $\alpha\beta + \frac{1}{\gamma}$.

7. (a) Express

$$\frac{(\cos 3\theta + i \sin 3\theta)^5}{(\cos \theta + i \sin \theta)^6}$$

in the form (a + ib).

3

6

- (b) Using Cardan's method, solve the equation $x^3 + 6x 2 = 0.$ 7
- 8. (a) Solve $z^5 + 1 = 0$ by De Moivre's theorem. 4
 - (b) Deduce Cardan's method of solution of cubic equation. 6

* * *

/629