2025

(NEP-2020)

(2nd Semester)

MATHEMATICS (MAJOR)

(Elementary Number Theory)

Full Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick (✓) the correct answer in the brackets provided:

 $1 \times 10 = 10$

- 1. The greatest common divisor of 24531 and 435 is
 - (a) 3 (
 - (b) 4 ()
 - (c) 5 ()
 - (d) 7 ()
- 2. The least common multiple of 3562 and 273 is
 - (a) 74724 ()
 - (b) 3562 ()
 - (c) 74725 ()
 - (d) 76748 ()

3.	A s	olution of the linear congruence $7x \equiv 5 \pmod{8}$ is						
	(a)	$x \equiv 2 \pmod{8} $						
	(b)	$x \equiv 3 \pmod{8} $						
	(c)	$x \equiv 4 \pmod{8} $						
	(d)	$x \equiv 5 \pmod{8} $						
4.	Wh	ich of the following is complete residue system modulo 11?						
	(a)	0, 2, 12, 3, 15, 19, 21, 9, 7, 16, 17 ()						
	(b) 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 ()							
	(c) -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6 ()							
	(d)	0, 1, 2, 3, 4, 5, 14, 15, 16, 17, 18 ()						
5	The	remainder when 8103 is divided by 103 is						
٥.	(a)							
		1 ()						
		103 ()						
	(d)							
6.		ch of the following is true?						
	(a)	For any integer $n > 2$, Euler's function $\phi(n)$ is even ()						
	(b)	For any integer $n > 2$, Euler's function $\phi(n)$ is odd ()						
	(c)	For any integer $n > 2$, Euler's function $\phi(n)$ is rational number ()						
	(d)	For any integer $n > 2$, Euler's function $\phi(n)$ is zero ()						
7 .	The	congruence $x^2 - x + 4 \equiv 0 \pmod{5}$ has						
	(a)	no solution ()						
	(b)	one solution ()						
	(c)	two solutions ()						
	(d)	four solutions ()						

8.	The	e value	of L	ege	endre symbol of $\left(\frac{29}{53}\right)$ is				
		- 1	()				
	(b)	1	()					
	(c)	0	()					
	(d)	2	()					
9.	. Which Fibonacci number is known as the golden ratio, denoted by the Greek letter phi(φ)?								
	(a)	1.317		()				
	(b)	1.318		()				
	(c)	0.617		()				
**	(d)	1.618		()				
10.	If n	= 7056	, the	n	the number of positive divisors of n , $\tau(n)$ is				
	(a)		()					
- 4	(b)	0	()	•				
	(c)	45	()					
	(d)	90	()					
	(SECTION : B—SHORT ANSWERS)								
(Marks: 15)									
Ansv	ver j	five que	estio	ns,	taking at least one from each Unit: 3×5	=15			
					Unit—I				
1.	Prove that if $a \mid b$ and $b \mid c$, then $a \mid c$.								
2.	2. Prove that the number of primes is infinite.								
Unit—II									
3.	If p is a positive prime and n is any positive integer, prove that								
-	$\phi(1) + \phi(p) + \phi(p^2) + + \phi(p^{n-1}) + \phi(p^n) = p^n$								
4.	Defi	ne com	plete	res	sidue system and reduced residue system with example.				

UNIT-III

- 5. Find all odd primes p such that 3 is a quadratic residue modulo p.
- 6. Let p be an odd prime. Prove that

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$$

UNIT-IV

- 7. Prove that the Mobius μ function is multiplicative.
- 8. Prove that any two consecutive terms of Fibonacci sequence are relatively prime.

(SECTION : C-DESCRIPTIVE)

(Marks: 50)

Answer five questions, taking at least one from each Unit:

10×5=50

UNIT-I

1. (a) State and prove division algorithm.

1+5=6

(b) Find the number of distinct positive integral divisors and their sum for the integer 56700.

6

6

4

4

2. (a) Let a and b integers, not both zero and let d be a positive integer. Prove that $d = \gcd(a, b)$ iff d satisfies (i) $d \mid a$ and $d \mid b$, and (ii) $c \mid a$ and $c \mid b$, then $c \mid d$.

= ab. 4

(b) For positive integers a and b, prove that $gcd(a, b) \cdot lcm(a, b) = ab$.

Unit—II

- 3. (a) Prove that the congruence $ax \equiv b \pmod{m}$ has a solution if and only if the greatest common divisor of a and m divides b, i.e., $(\gcd(a, m) \mid b)$.
 - (b) Show that 16!+86 is divisible by 323 by using Wilson's theorem.
- 4. (a) State and prove Fermat's theorem.

1+5=6

(b) Solve the linear congruence

 $13x \equiv 9 \pmod{25}$

UNIT-III

5. (a) Let p be an odd prime and gcd(a, p) = 1. Prove that a is a quadratic residue of p if and only if

$$a^{\left(\frac{p-1}{2}\right)} \equiv 1 \pmod{p} \tag{6}$$

- (b) Solve $353x \equiv 254 \pmod{400}$.
- 6. (a) Using Chinese remainder theorem, solve the following systems of equations:

$$x \equiv 3 \pmod{11}$$

 $x \equiv 5 \pmod{19}$
 $x \equiv 10 \pmod{29}$

(b) Find all solutions of $x^2 + x + 7 \equiv 0 \pmod{3}$.

UNIT-IV

7. (a) Let p be a prime and n a positive integer. Prove that the exponent e such that $p^e \mid n!$ is

$$\sum_{k=1}^{\infty} \left(\frac{n}{p^k} \right)$$

- (b) If f is a multiplicative arithmetic function and F is defined by $F(n) = \sum_{d|n} f(d)$, prove that F is also multiplicative.
- 8. (a) Let F and f be two arithmetic functions related by the equality

$$f(n) = \sum_{\substack{a \\ n}} \mu(a) F\left(\frac{n}{a}\right)$$

Prove that $F(n) = \sum_{a|n} f(a)$.

(b) For each integer $n \ge 1$, prove that

$$\Sigma_{d|n} \mu(d) = \begin{cases} 1 & \text{if } n=1 \\ 0 & \text{if } n>1 \end{cases}$$

* * *

6

4

6

4