MATH/VI/CC/09

Student's Copy

2025

(CBCS)

(6th Semester)

MATHEMATICS

NINTH PAPER

(Modern Algebra)

Full Marks : 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Put a Tick (1) mark against the correct answer in the brackets provided :

1×10=10

1. An element a of a group G is self-conjugate if and only if $\forall x \in G$

(a)
$$(ax)^2 = ax$$
 ()

- (b) a = x ()
- $(c) \quad xa = ax \qquad ()$

$$(d) \ a = xa$$
 ()

2. A subgroup of index 2 is

- (a) cyclic ()
- (b) abelian ()
- (c) normal ()
- (d) None of the above ()

/807

З.	Which of the following is not an integral domain?
	(a) $\mathbb{Z}[i] = \{a + ib : a, b \in \mathbb{Z}\}$, the ring of Gaussian integers ()
	(b) The ring of rational numbers ()
	(c) The finite ring $(\{0, 1, 2, 3, 4\}, +_5, \times_5)$ ()
	(d) The finite ring $(\{0, 1, 2, 3, 4, 5\}, +_6, \times_6)$ ()
4.	The ring of integers is
	(a) a subring as well as an ideal of the ring of rational numbers ()
	(b) an ideal but not a subring of the ring of rational numbers ()
	(c) a subring but not an ideal of the ring of rational numbers ()
	(d) neither a subring nor an ideal of the ring of rational numbers ()
5.	In a commutative ring with unity, the associate(s) of the zero element 0 is/are
	(a) 0 only ()
	(b) 0 and 1 ()
	(c) $1 \text{ and } -1$ ()
	(d) all the elements of the ring ()
~	Let a be a unit in a Euclidean ring R . Then
0.	(a) a is not a zero divisor ()
	(b) a is not invertible ()
	(c) a is irreducible ()
	(d) a is a prime element ()
7	Which of the following sets of vectors is linearly independent?
	$(a) \{(2, 1, 4), (6, 3, 12)\} (b) $
	(b) $\{(-1, 2, 1), (3, 0, -1), (-5, 4, 3)\}$ ()
	(c) $\{(1, 2, 1), (3, 1, 5), (3, -4, 7)\}$ ()
	(d) $\{(2, -3, 1), (3, -1, 5), (1, -4, 3)\}$ ()

8. Let $L(\phi)$ denote the linear span of the null set. Then

- (a) L(φ) = φ ()
 (b) L(φ) = {0}, where 0 is the zero vector ()
 (c) L(φ) = 0, where 0 is the zero vector ()
 (d) L(φ) is an infinite set ()
- **9.** Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation defined by T(x, y, z) = (y + z, y z). Then the matrix of T with respect to the ordered basis $\{(0, 1, 1), (1, 0, 1), (1, 1, 0)\}$ and $\{(1, 0), (0, 1)\}$ is given by

(a)	$\begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix}$	()
(b)	$\begin{bmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$	()
(c)	$\begin{bmatrix} 1 & 1 & 2 \\ 0 & -1 & 1 \end{bmatrix}$)
(d)	$\begin{bmatrix} 2 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix}$	()

- 10. Let T be a linear transformation from a vector space V into a vector space W. Then the nullity of T is
 - (a) the set of all vectors α in V which are mapped onto the zero vector
 ()
 - (b) the dimension of the null space of T ()
 - (c) the set of all vectors α in V which are mapped onto the unit vector ()
 - (d) the dimension of the range space of T ()

(SECTION : B-SHORT ANSWERS)

(Marks: 15)

Answer the following questions :

Unit—1

1. Let G be a group and f be a mapping from G into G defined by $f(x) = x^{-1}$, $\forall x \in G$. Show that f is an automorphism if and only if G is Abelian.

OR

2. Prove that a subgroup H of a group G is a normal subgroup of G if and only if each left coset of H in G is a right coset of H in G.

UNIT-2

3. Prove that every field is an integral domain.

OR

4. Show that the set of all 2×2 matrices of the form $\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}$, for all integers a, b

is a left ideal but not a right ideal of the ring R of all 2×2 matrices with elements as integers.

Unit—3

5. Prove that every field is a Euclidean ring.

OR

6. In the quadratic integer ring $\mathbb{Z}[i\sqrt{5}] = \{a + ib\sqrt{5}: a, b \in \mathbb{Z}\}$, show that 3 is irreducible but not prime.

Unit—4

7. Show that if two vectors are linearly independent, then one of them is a scalar multiple of the other.

3×5=15

of given Show that the subset the vector \mathbb{R}^n space by $S = \{(a_1, a_2, \dots, a_n) : a_2 + 2a_3 = 0\}$ is a subspace of \mathbb{R}^n .

UNIT-5

9. Show that the function $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x, y) = (\sin x, y)$ is not a linear transformation.

OR

10. Find the kernel of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (x + y, y - z).

(SECTION : C-DESCRIPTIVE)

(Marks: 50)

Answer the following questions :

UNIT-1

1. (a) If G is a group and H is any subgroup of G, and if N is any normal subgroup of G, then prove that

$$\frac{HN}{N} \equiv \frac{H}{H \cap N} \tag{6}$$

(b) If the order of a group G is p^2 , where p is prime, then show that 4 G is abelian.

OR

2. Prove that the set I(G) of all inner automorphisms of a group G is a normal subgroup of the group of all automorphisms of G. Also prove that I(G) is isomorphic to the quotient group G/Z of G, where Z is the centre of G. 4+6=10

5

10×5=50

Unit—2

3.	(a)	Prove that every finite integral domain is a field.	5			
5.	(b)	Show that the ring of integers is a principal ideal domain.	5			
		OR				
4.		Show that a commutative ring with unity is a field if it has no proper ideal.	4			
	(b)	If R is a commutative ring with unity, then prove that an ideal S of R is maximal if and only if the factor ring R/S is a field.	6			
Unit—3						
5.	(a)	Let f be a homomorphism of a ring R into a ring R' . Show that the kernel of f is an ideal of R .	4			

(b) Prove that every non-zero element in a Euclidean ring R is either a unit in R or can be written as a product of a finite number of prime elements of R.

OR

- **6.** (a) Let D be an integral domain with unity element 1. Show that two non-zero elements $a, b \in D$ are associates if and only if $a \mid b$ and $b \mid a$.
 - (b) Let a and b be two non-zero elements of a Euclidean ring R. Then show that (i) if b is a unit in R, then d(ab) = d(a) and (ii) if b is not a unit in R, then d(ab) > d(a).

Unit—4

- 7. (a) Prove that every linearly independent subset of a finitely generated vector space V(F) is either a basis or can be extended to form a basis of V.
 - (b) Prove that the union of two subspaces is a subspace if and only if one is contained in the other.

5

5

б

6

4

6

1807

8. (a) If W is a subspace of a finite-dimensional vector space V, then prove that $\dim (V/W) = \dim V - \dim W$.

(b) Show that a superset of a linearly independent set of vectors is linearly independent.

UNIT-5

- 9. (a) Let V be a finite-dimensional vector space over the field F and let $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ be an ordered basis for V. Let W be vector space over the same field and let $\beta_1, \beta_2, \dots, \beta_n$ be any n vectors in W. Then prove that there exists a unique linear transformation T from V into W such that $T(\alpha_i) = \beta_i$, $i = 1, 2, \dots, n$.
 - (b) Let V and W be vector spaces over the same field F, and let T be a linear transformation from V into W. If V is finite-dimensional, then prove that rank T + nullity T = dim V.

OR

- 10. (a) Let V be an n-dimensional vector space over the field F, and W be an m-dimensional vector space over the same field F. Then prove that the vector space L(V, W) of linear transformations from V into W is also finite-dimensional and is of dimension mn.
 - (b) Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be a linear transformation defined by

T(x, y, z, t) = (x - y + z + t, x + 2z - t, x + y + 3z - 3t)

Determine the rank and nullity of T.

* * *

7

6

4

5

5

5

5