MATH/VI/CC/10

Student's Copy

2025

(CBCS)

(6th Semester)

MATHEMATICS

TENTH PAPER

(Advanced Calculus)

Full Marks: 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks : 10)

Tick ☑ the correct answer in the box provided :

 $1 \times 10 = 10$

[Contd.

- If f(x) = x and let P = {0, 1, 2, 3} be the partition of [0, 3], then the value of U(P, f) is
 - (a) $\frac{1}{3}$ (b) $\frac{1}{2}$ (c) 3 (d) 6 \square

/808

2. If a bounded function f is integrable on [a, b], then

(a) $\lim_{\mu(P)\to\infty} S(P, f) = \int_a^b f \, dx \qquad \Box$ (b) $\lim_{\mu(P)\to0} S(P, f) = \int_a^b f \, dx \qquad \Box$ (c) $\int_a^b f \, dx \neq \int_a^b f \, dx \qquad \Box$ (d) $L(P, f) = U(P, f) = S(P, f) \qquad \Box$

3. If f and g be two positive functions on [a, b] such that $\lim_{x \to a^+} \frac{f(x)}{g(x)} = l$, a non-zero finite number, then (a) $\int_a^b g \, dx$ converges if $\int_a^b f \, dx$ diverges

- (b) $\int_{a}^{b} f \, dx$ converges if $\int_{a}^{b} g \, dx$ diverges (c) $\int_{a}^{b} f \, dx$ diverges if $\int_{a}^{b} g \, dx$ converges
- (d) $\int_{a}^{b} f \, dx$ and $\int_{a}^{b} g \, dx$ behave alike

4. The improper integral $\int_a^\infty \frac{1}{x^n} dx$ converges if and only if

- (a) n > 1
- (b) n < 1 □
- (c) n=1
- (d) $n \leq 1$

5. Let $\phi(y) = \int_{a}^{b} f(x, y) dx$ is continuous and f_{y} also exists and continuous in [a, b; c, d]. Then ϕ is

- (a) continuous
- (b) integrable
- (c) derivable
- (d) None of the above

- 6. If $\int_0^\infty \frac{\cos mx}{a^2 + x^2} dx = \frac{\pi}{2a} e^{-ma}$, then the value of $\int_0^\infty \frac{x \sin mx}{1 + x^2} dx$ is (a) $-\frac{\pi}{2}e^{-m}$ (b) $\frac{\pi}{2}e^m$ (c) $-\frac{\pi}{2}e^m$ (d) $\frac{\pi}{2}e^{-m}$
- 7. The value of $\int_C (x^2 dx + xy dy)$ taken along the line segment from (1, 0) to (0, 1) is
 - $(a) \frac{1}{6}$ (b) $-\frac{1}{2}$ (c) $\frac{1}{2}$ (d) $\frac{\pi}{2}$

8. The value of the integral $\int_{y=1}^{2} \int_{x=0}^{3} (1+8xy) dx dy$ is

(a) 54 (b) 57 🗌 (c) - 36 (d) 45

9. Regarding convergence of sequences in [a, b], which of the following is true?

(a)	Every pointwise convergence is uniform convergence	
(b)	Every uniform convergence is pointwise convergence	
(c)	Every uniform limit need not be a pointwise limit	
(d)	All of the above	

- 10. The sequence $\{f_n\}$ of continuous function is uniformly convergent to a function f on [a, b]. Then f is also
 - (a) uniformly convergent
 - (b) integrable
 - (c) continuous
 - (d) differentiable

(SECTION : B-SHORT ANSWERS)

(Marks: 15)

Answer the following :

UNIT—I

1. Let f be a bounded function defined on [a, b] and let P be the partition of [a, b]. If P^* is a refinement of P, then prove that $U(P, f) \ge U(P^*, f)$.

OR

2. Test the Riemann integrability for the function f(x) = x by dividing [0, 1] into 6 equal intervals.

UNIT-II

3. Test the convergence of the improper integral $\int_0^\infty x^3 e^{-x^2} dx$.

OR

4. Using Frullani's integral, evaluate $\int_0^\infty \frac{\tan^{-1}(ax) - \tan^{-1}(bx)}{x} dx.$

UNIT-III

5. If $f(x, y) = \frac{y^2}{x^2 + y^2}$ and $g(y) = \int_0^1 f(x, y) dx$, then evaluate the value of $\int_0^1 f_y(x, 0) dx$.

OR

6. Write the statement of Weierstrass' *M*-test for uniform convergence of improper integral of the type $\int_a^b f(x, y) dx$.

/808

4

Contc

3×5=15

And the state of t

UNIT-IV

7. Evaluate the value of $\iint_A xy \, dx \, dy$ over the positive quadrant of the circle $x^2 + y^2 = a^2$.

OR

8. Evaluate the double integral $\int_{1}^{4} \int_{0}^{\sqrt{y}} e^{x/\sqrt{y}} dx dy$.

UNIT-V

9. Show, by M_n -test, the sequence of function $f_n(x) = \frac{x}{1+b^2x^2}$ is uniformly convergent in [k, 1] for k > 0, but not uniformly convergent in [0, 1].

OR

10. Prove that the sequence $f_n(x) = x^n$ is pointwise convergent on [0, 1] and evaluate the pointwise limit.

(SECTION : C-DESCRIPTIVE)

(Marks : 50)

Answer the following :

UNIT-I

1. (a) If a function f is bounded and R-integrable on [a, b] and there exists a function F such that F' = f on [a, b], then prove that

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$
5

(b) Prove that the function defined by

$$f(x) = \frac{1}{2^n}$$
, when $\frac{1}{2^{n+1}} < x \le \frac{1}{2^n}$, for $n = 0, 1, 2, ...$

and f(0) = 0 is R-integrable and show that $\int_0^1 f \, dx = \frac{2}{3}$.

5

3+2=5

10×5=50

/808

| Contd.

d by

2. (a) If $\int_{a}^{b} f \, dx$ and $\int_{a}^{b} g \, dx$ both exist and g(x) keeps the same sign over [a, b], then prove that there exists a number μ lying between the bounds of f such that

$$\int_{a}^{b} f(x) g(x) dx = \mu \int_{a}^{b} g dx \qquad 5$$

(b) If a function f is continuous on [0, 1], then find the value of $\lim_{n \to \infty} \int_0^1 \frac{nf(x)}{1 + n^2 x^2} dx$

Unit—II

3. (a) Prove that the improper integral $\int_{a}^{b} f(x) dx$ is convergent at a if and only if to every $\varepsilon > 0$ there exists a corresponding $\delta > 0$ such that $\left| \int_{a+\lambda_{1}}^{a+\lambda_{2}} f(x) dx \right| < \varepsilon$ for $0 < \lambda_{1}, \lambda_{2} < \delta$

(b) Prove that every absolutely convergent integral is convergent.

OR

- 4. (a) If $\phi(x)$ is bounded and monotonic in $[a, \infty)$ and $\int_a^{\infty} f(x) dx$ is convergent at ∞ , then prove that $\int_a^{\infty} f(x) \phi(x) dx$ is convergent at ∞ .
 - (b) By Cauchy's test, show that $\int_0^\infty \frac{\sin x}{x} dx$ is convergent. 5

UNIT-III

5. (a) If $|a| \le 1$, then show that

$$\int_0^\pi \log\left(1 + a \cos x\right) dx = \pi \log\left(\frac{1}{2} + \frac{1}{2}\sqrt{1 - a^2}\right)$$
5

(b) Evaluate the value of the improper integral

$$\int_0^\infty e^{-x^2} \cos \alpha x \, dx \qquad 5$$

/808

[Contd.

5

5

5

5

- (a) Prove that uniformly convergent improper integral of a continuous function is itself continuous.
 - (b) Evaluate the value of the improper integral

$$f(y) = \int_0^\infty \frac{\cos yx}{1 + x^2} \, dx$$

- 7. (a) Evaluate the integral $\int_0^3 \int_{x^2}^9 x^3 e^{y^3} dy dx$ by reversing the order of integration with a rough figure.
 - (b) Show that

$$\int_0^1 \left\{ \int_0^1 \frac{x^2 - y^2}{x^2 + y^2} \, dy \right\} \, dx = \int_0^1 \left\{ \int_0^1 \frac{x^2 - y^2}{x^2 + y^2} \, dx \right\} \, dy$$

i.e., change in order of integration is permissible.

OR

- 8. (a) Change the order of integration in the integral $\int_0^1 \int_{x^2}^{2-x} xy \, dx \, dy$ and hence evaluate it with a rough figure.
 - (b) Prove that

$$\int_0^1 \left\{ \int_0^1 \frac{(x-y)}{(x+y)^3} \, dy \right\} \, dx = \frac{1}{2}$$

but the value changes its sign as the order of integration interchanges.

- 9. (a) Show that $f_n(x) = x^n$ is uniformly convergent on [0, k], where k is a number less than 1 and only pointwise convergent in [0, 1].
 - (b) Show that a series of function Σf_n will converge uniformly (and absolutely) on [a, b] if there exists a convergent series ΣM_n of positive numbers such that $\forall x \in [a, b] | f_n(x) | \le M_n \ \forall n$.

7

/808

[Contd.

5

5

5

5

5

5

5

10. (a) If a sequence $\{f_n\}$ converges uniformly to f on $x \in [a, b]$ and f_n be integrable $\forall n$, then prove that f is integrable and

$$\int_{a}^{x} f(x) dx = \lim_{n \to \infty} \int_{a}^{x} f_{n}(x) dx$$

5

G25-200

(b) Examine whether the infinite series

$$\sum_{n=1}^{\infty} \frac{1}{n^3 (1+n) x^2}$$

can be differentiated term-by-term.

* * *