CHEM/VI/CC/20

Student's Copy

2025

(CBCS)

(6th Semester)

CHEMISTRY

ELEVENTH PAPER

(Physical Chemistry—III)

Full Marks : 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick (\checkmark) the correct answer in the brackets provided :

- 1. A photochemical reaction takes place by the absorption of
 - (a) infrared radiation ()
 - (b) γ-rays ()
 - (c) visible and ultraviolet radiations ()
 - (d) X-rays ()

2. If a photochemical reaction obeys Einstein law, then the quantum yield is

- (a) 0 ()
- (b) >1 ()
- (c) <1 ()
- (d) 1 ()

/793

1×10=10

3. When $\int \Psi n^* \Psi m d\tau = 1$, the eigenfunctions are

(a)	arbitrary	()	
(b)	diagonal	()	
(c)	orthogonal	(])
(d)	normalized	()

4. As the wavelength of the radiation decreases, the intensity of the black-body radiations

(a) decreases () (b) increases (1 (c) first decreases then increases () (d) first increases then decreases ()

5. The electronic partition function of H atom in the ground electronic state is

- (a) 2 ()
 - (b) 1 () (c) 0 ()
 - ((c) 0)
 - (d) 4

6. The canonical partition function of a system of independent indistinguishable particles is

- $(a) q^N N! \qquad ()$
- (b) $N!/q^N$ ()
- (c) $q^N / N!$ ()
- (d) None of the above ()

7. The molecule which is IR inactive but Raman active is

- (b) SO_2 ()
- (c) N_2 ()
- (d) KCl ()

/793

8. Which of the following cannot show a vibrational absorption spectrum?

- (a) OCS ()
- (b) $CH_2 = CH_2$ ()
- (c) H₂O ()
- (d) CO_2 ()
- The electrode potential of hydrogen electrode in neutral solution and 298 K is
 - (a) żero ()
 - (b) -0.41 V ()
 - (c) -0.49 V ()
 - (d) + 0.41 V ()
- 10. When equilibrium is reached inside the two half-cells of the electrochemical cells, what is the net voltage across the electrodes?
 - (a) > 1 () (b) < 1 () (c) = 0 ()
 - (d) Not defined ()

(SECTION : B-SHORT ANSWERS)

(Marks: 15)

Answer the following questions :

3×5=15

Unit—I

1. State and explain chemiluminescence by giving suitable example.

OR

2. Distinguish between photochemical and thermal reactions.

Unit—II

3. Describe Planck's quantum theory of radiation.

OR

4. State and explain photoelectric effect.

Unit—III

5. Derive the multiplication theorem of partition function.

OR

6. Derive the relationship between pressure (P) and molecular partition function (q).

Unit—IV

 Describe briefly the Born-Oppenheimer approximation of molecular energies.

OR

 Discuss the selection rule in Raman spectroscopy and also discuss Raman and IR activity in case of H₂O and CO₂ molecules.

UNIT-V

9. Differentiate between electrolytic and electrochemical cells.

OR

10. Write the cell reaction and also calculate the standard cell e.m.f. for the cells Zn, $Zn^{2+} (1 M) | Fe^{2+} (1 M)$, $Fe^{3+} (1 M)$; Pt. Given $E^{\circ} (Fe^{3+}, Fe^{2+}) = +0.77 V$ and $E^{\circ} (Zn^{2+}, Zn) = -0.76 V$.

/793

| Contd.

(Marks: 50)

Answer the following questions :

UNIT-I

- (a) State and explain Beer-Lambert law of light absorption by solution. In the process, also obtain expressions for absorbance and transmittance of the solution.
 - (b) Calculate the number of moles of HCl(g) produced by the absorption of 1 J of radiant energy of $\lambda = 480$ nm in the reaction H₂(g) + Cl₂(g) = 2 HCl, if quantum yield (Φ) for the photochemical reaction is 1×10⁶.
 - (c) What do you mean by quenching? Explain.

OR

2. (a) Discuss, in detail, the photolysis of hydrogen iodide.

- (b) A 0.003 M solution of a coloured substance transmits 75% of incident light of 500 nm when placed in a cell of length 1 cm. Calculate molar extinction coefficient and hence the optical density of 0.001 M of the solution in the same cell at the same wavelength.
- (c) What are photosensitizers? Discuss in detail the mechanism of photosensitizers by giving suitable examples.

UNIT-II

3.	(a)	Describe the black-body radiation.	3
	(b)	What are the postulates of quantum mechanics?	3
	(c)	Derive Schrödinger wave equation.	4

/793

10×5=50

4

5

3

2

3

Contd.

5

4.	(a)	Discuss, in detail, Debye theory of heat capacity of monatomic solids.	3
	(b)	Discuss zero-point energy.	3
	(c)	Derive an expression for free particles in one-dimensional box.	4
		Unit—III	

- 5. (a) Derive relationship between entropy (S) and molecular partition function (q) of an ideal gas.
 - (b) Calculate the characteristic rotational temperature and the rotational partition function for H_2 gas molecule at 3000 K, given that the moment of inertia of H_2 (g) molecule at this temperature is 4.6033×10^{-48} .
 - (c) Derive an expression for Maxwell distribution law which gives most probable distribution for a microstate.

OR

б.	(a)	What are the limitations of classical thermodynamics?	3
	(b)	Derive Sackur-Tetrode equation in case of an ideal monatomic gas.	3

(c) Derive an expression for the molecular translational partition function of an ideal gas.

UNIT-IV

7. (a)	Discuss, in detail, quantum theory of Raman spectroscopy.	3
(Ъ)	Discuss the rule of mutual exclusion principle, taking CO_2 as an	
	example.	3
(c)	State and explain Franck-Condon principle.	4

/793

3

4

4

OR

8.	(a)	Explain anharmonicity with the help of Morse potential curve.	3
	(Ь)	What are radiative and non-radiative transitions?	3
	(c)	Derive an expression for the rotational energy of a rigid diatomic rotor.	4

UNIT-V

9.	(a)	Describe the determination of pH of a solution using glass electrode.	3
		solution of pri of a solution using glass cicculuc.	

- (b) Define liquid junction potential (LJP) and also derive the expression for its potential.
- (c) Derive an expression for e.m.f. of a concentration cell with transference number.

OR

10. (a) For the Daniel cell involving the cell reaction

$$Zn(s) + Cu^{2+}(aq) \leftrightarrow Zn^{2+}(aq) + Cu(s)$$

the standard free energies of formation of Zn (s), Cu (s), Cu²⁺ (aq) and Zn^{2+} (aq) are 0, 0, 64.4 and -154.0 kJ mol⁻¹ respectively. Calculate the standard e.m.f. of the cell.

- (b) Establish the relationship of e.m.f. with (i) enthalpy and (ii) entropy of the cell.
- (c) Explain the term 'electrode potential'. Derive Nernst equation for describing the effect of concentration of electrolyte on electrode potential. 1+3=4

З

4

3

3