CHEM/VI/CC/18

Student's Copy

2025

(CBCS)

(6th Semester)

CHEMISTRY

TENTH PAPER

(Organic Chemistry-III)

Full Marks : 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks : 10)

Tick (✓) the correct answer in the brackets provided : 1×10=10

- 1. In carbonyl compounds, the absorption of UV-light at 285 nm causes
 - (a) $n \to \pi^*$ transition()(b) $\sigma \to \sigma^*$ transition()(c) $n \to \sigma^*$ transition()(d) $\pi \to \pi^*$ transition()
- 2. Which of the following regions of the light radiations of the UV-visible range brings about photochemical reactions?
 - (a) 2000 Å to 1000 Å () (b) 1000 Å to 1500 Å ()
 - (c) 2000 Å to 8000 Å ()
 - (d) 12000 Å to 19000 Å ()

/792

3. The ground-state HOMO of 1,3-butadiene is having

(a) m-symmetry ()
(b) C₂-symmetry ()
(c) three nodes ()
(d) two nodes ()

4. Electrocyclic reaction involves the formation or breaking of

- (a) one σ-bond
 (b) two σ-bonds
 (c) three σ-bonds
 (c) three σ-bonds
- (d) four σ-bonds ()

5. Thiols react with ketones in the presence of hydrochloric acid to give

- Grignard's reagent reacts with carbon dioxide followed by hydrolysis to produce
 - (a) carboxylic acid ()
 - (b) primary alcohol ()
 - (c) secondary alcohol ()
 - (d) tertiary alcohol ()
- 7. Cyclohexanone oxygenase enzyme is typically used as
 - (a) hydroxylating agent ()
 - (b) reducing agent ()
 - (c) oxidizing agent ()
 - (d) hydrating agent ()

- 8. What is the main goal of green chemistry?
 - (a) To minimize the use of hazardous chemicals ()
 - (b) To reduce the amount of waste produce during chemical reaction ()
 - (c) To increase the efficiency of chemical reaction ()
 - (d) All of the above ()
- 9. Which of the following compounds will give single NMR signal due to equivalent protons?
 - (a) $CH_3CH_2OCH_3$ ()
 - (b) CH₃COOCH₃ ()
 - (c) CH₃-OCH₃ ()
 - (d) $CH_2 = CH Cl$ ()
- In NMR spectrum, the distance between the centres of the two adjacent peaks in a multiplet is called
 - (a) base peak ()
 - (b) molecular ion peak ()
 - (c) chemical shift ()
 - (d) coupling constant ()

SECTION : B-SHORT ANSWERS)

(Marks: 15)

Answer the following :

3×5=15

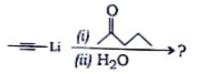
UNIT---I

1. Explain singlet and triplet states of an electron.

OR

2. Briefly explain intersystem crossing.

Unit—II


3. Explain conrotatory and disrotatory motions of σ - or π -MO in an electrocyclic reaction by taking suitable examples.

OR

 Based on FMO method, discuss photo-induced cyclization of 1,4-dimethyl-1,3-butadiene.

Unit—III

5. Write the mechanism for the following transformation :

OR

- Give one difference in chemical reaction between Grignard's reagent and organolithium.
 - UNIT-IV
- 7. What is Baker's yeast and how is it used for selective reduction of beta-keto esters?

OR

8. Discuss green method of aldol condensation in solid phase.

UNIT-V

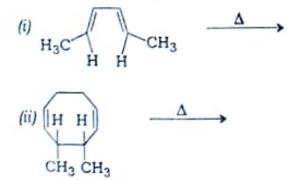
9. What is McLafferty rearrangement? Illustrate with suitable example.

OR

10. Explain shielding and deshielding of protons in ¹H-NMR spectra.

(SECTION : C-DESCRIPTIVE)

(Marks : 50)


Answer the following :

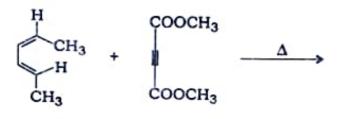
UNIT-I

1.	(a)	Describe different types of electronic excitation of organic compound on irradiation with light.	5
	(b)	Explain Norrish type I and Norrish type II product(s) with an examples.	5
		OR	
2.	(a)	Explain the photosensitization process with an example.	3
	(Ъ)	Give the mechanism of the following transformation :	3
		$\longrightarrow = 0 \xrightarrow{hv} \bigvee$	
	(c)	Explain Paterno-Buchi reaction taking a suitable example.	4

UNIT-II

- 3. (a) Explain the reaction of [4+2] cycloaddition using Woodward-Hoffmann rule. 3
 - (b) Using FMO method, write the products with stereochemistry for the following electrocyclic reactions : $2 \times 2 = 4$

(c) Discuss frontier orbital theory for an electrocyclic reaction.

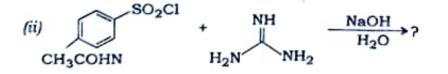

з

/792

10×5=50

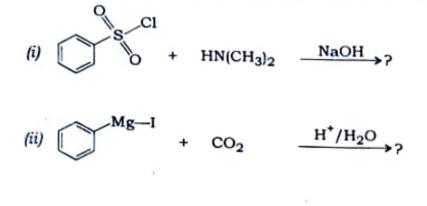
OR

- **4.** (a) Why is $[\pi_s^4 + \pi_s^2]$ cycloaddition thermally allowed but not photochemically?
 - (b) Cyclohexadiene converted to 1,3,5-hexatriene by electrocyclic interconversion. Explain the process using Woodward-Hoffmann rule.
 - (c) Write the product with proper stereochemistry for the following reaction :


UNIT-III

5.	(a)	How is sulphaguanidine prepared? Write the reaction mechanism.	4
	(b)	Write the reaction pathway for the preparation of 2-phenylpropan-2-ol from acetophenone using methylmagnesium bromide.	4
	(c)	What is Frankland's reagent? Show one method of its preparation.	2
		OR	
-			

6. (a) Mention one method of preparation of organolithium compound. 2


(b) Complete the following reactions with suitable mechanism : 3×2=6

(i) (i) + $2C_2H_5SH$ (i) + $HCl \rightarrow ?$

4

(c) Complete the following reactions (mechanism not required) : $1 \times 2=2$

UNIT-IV

7.	(a)	Discuss and illustrate the migratory aptitude in Baeyer-Villiger oxidation process with mechanism.	5
	(b)	Write the procedure for the preparation of butyraldehyde by ultrasonic irradiation.	5
		OR	
8.	(a)	Write a note on biochemical oxidation.	3

•• (u)	while a note on biochemical oxidation.	3
(Ъ)	Discuss the microwave-assisted Mannich reaction with an example.	4
(c)	Discuss the preparation of 2-chloro-N-aryl anthranilic acid.	3

UNIT-V

9.	(a)	Sketch the H-NMR signal for acetophenone.	2
	(Ъ)	Write the possible fragmentation and related m/z values of different fragments of <i>n</i> -pentane in mass spectroscopy.	3
	(c)	Distinguish between cis- and trans-stilbene on the basis of ¹ H-NMR spectroscopy.	3
	(d)	Draw the high resolution ¹ H-NMR spectra of toluene.	2

1792

- OR
- 10. (a) When 2-methylbutane is bombarded with high energy electron, it gets fragmented and gives m/z values at 71, 57 and 43. Determine the fragmented structure.
 - (b) What is a chemical shift in NMR spectroscopy? Mention the factors that affect chemical shift in NMR spectrum.

* *

- (c) Define base peak and molecular ion peak with diagram.
- (d) Discuss the fragmentation pattern of n-butane.

/792

3

3

2