BCA/2/CC/08

Student's Copy

Professional Course (Even) Examination, 2025

(2nd Semester)

BACHELOR OF COMPUTER APPLICATIONS

(Discrete Mathematics)

Full Marks : 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(PART : A-OBJECTIVE)

(Marks : 25)

SECTION-I

(Marks : 15)

I. Tick (\checkmark) the correct answer in the brackets provided :

 $1 \times 10 = 10$

1. Two finite sets A and B are said to be equivalent if

(a)
$$A \cap B = \phi$$
 ()
(b) $n(A) = n(B)$ ()
(c) $A = B$ ()
(d) $A \cap B \neq \phi$ ()

2. In Boolean algebra, $a + (a \cdot b)$ is equal to

(c)
$$a + b$$
 ()

$$(d) a - b$$
 (

[Contd.

3.	A statement formula which is neither a tautology nor a contradiction is called
	(a) logical equivalence ()
	(b) logical consequence ()
	(c) contingent ()
	(d) conjunction ()
4.	Which of the following is not a statement?
	(a) 4 is a real number ()
	(b) I am a liar ()
	(c) Delhi is the capital of Japan ()
	(d) Barack Obama is the President of USA ()
5.	The value of ${}^{15}C_3$ is
	<i>(a)</i> 540 ()
	<i>(b)</i> 650 ()
	(c) 255 ()
	(d) 455 ()
6.	The number of different 4-letter words (may be meaningless) that can be formed from the letters of the word 'NUMBERS' is
	(a) 840 ()
	(b) 720 ()
	(c) 5040 ()
	(d) 650 ()
7.	If $gcd(3, 4) = 1$, then 3 and 4 are
	(a) relatively prime integers
	(b) commutative ()
	(c) associative
÷.	(d) None of the above
	[Contd.

2

/455

8. φ(12) = ?

- (a) 4 () (b) 12 ()
- (c) 3 ()

```
(d) 2 ()
```

9. A graph in which each edge is assigned a numerical value is called

- (a) subgraph ()
- (b) weighted graph ()
- (c) Hamiltonian graph ()
- (d) simple graph ()

10. A tree with n vertices has

- (a) n edges ()
- (b) no edge ()
- (c) 1 edge ()
- (d) (n-1) edges ()

II. State whether the following are True (T) or False (F) :

1. The set of all points on a line segment is a finite set.

2. The operational symbols ~, \land , \lor , \models , \equiv , \rightarrow and \leftrightarrow are called connectives.

3. The number of all permutations of n different things taken all at a time given by ${}^{n}P_{n} = n!$.

- 4. If a > 0, then gcd(a, a) = 0.
- 5. A graph which is permitted to have multiple edges is called multigraph.

 $1 \times 5 = 5$

SECTION-II

(Marks : 10)

III. Answer the following questions :

1. (a) Prove that a + a = a and $a \cdot a = a$ for every $a \in B$.

OR

(b) If $A = \{a, b, c, d, e\}$, $B = \{a, c, e, g\}$ and $C = \{b, e, f, g\}$, then verify that $A \cap (B - C) = (A \cap B) - (A \cap C)$.

2×5=10

Conti

- 2. (a) Prove that $p \rightarrow q$, $\sim p \rightarrow q \models q$. OR
 - (b) Verify that $(p \land q) \land \neg (p \lor q)$ is a contradiction.
- 3. (a) Expand $(x^2 + 2y)^5$ by binomial theorem.

OR

(b) If ${}^{18}C_r = {}^{18}C_{r+2}$, then find the value of ${}^{r}C_5$.

4. (a) Solve $5x \equiv 2 \pmod{9}$.

OR

- (b) Prove that gcd(a, b) = gcd(|a|, |b|).
- 5. (a) Define Eulerian graph and tree.

OR

(b) Define simple graph with example.

4

(PART : B-DESCRIPTIVE)

(Marks : 50)

W. Answer the following questions :

- (a) In a class, 18 students offered physics, 23 offered chemistry and 24 offered mathematics. Of these, 13 are in both chemistry and mathematics, 12 in physics and chemistry, 11 in mathematics and physics, and 6 in all the three subjects. Find—
 - (i) how many students are there in the class;
 - (ii) how many offered mathematics but not chemistry;
 - (iii) how many are taking exactly one of the three subjects.
 - (b) If $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, $A = \{1, 2, 3, 4\}$, $B = \{2, 4, 6, 8\}$ and $C = \{1, 4, 5, 6\}$, then find— (i) (B')'; (ii) $(A \cup B)'$; (iii) $(A \cap C)'$;
 - (iv) (B C)'.

1455

OR

(c) Draw switching circuit for the following Boolean expression : 4

z(x + y') + xz' + z'(z + y')

- (d) Construct switching table for the switching function f represented by the Boolean expression xyz + x'(y + z). 6
- 2. (a) Construct a truth table for the statement formula

$$(p \wedge q) \vee (q \wedge (p \vee r))$$

(b) Verify by truth tables $p \to (q \land r) \equiv (p \to q) \land (p \to r)$. 5

5

10×5=50

4

6

[Contd.

(c) Determine whether the following statement is tautology, contradiction or contingent :

$$-((p \rightarrow q) \leftrightarrow -(p \wedge -q))$$

(d) Construct truth table for the following :

$$(p \to (\neg q \lor r)) \land (q \lor (p \leftrightarrow r))$$

3. (a) Find the 4th term from the end in the expansion of

$$\left(\frac{4x}{5}-\frac{5}{2x}\right)^9$$

(b) Find the term independent of x in the expansion of

 $\left(x^2 - \frac{2}{x^3}\right)^{15}$

OR

(c) Find the coefficient of x^6 in the expansion of

 $\left(3x^2-\frac{1}{3x}\right)^9$

(d) Find the two middle terms in the expansion of

 $\left(x^4 - \frac{1}{x^3}\right)^{11}$

- 4. (a) State and prove Fermat's theorem.
 - (b) Prove that the relation 'congruence modulo m' is an equivalence relation in the set of integers.

OR

- (c) Find (275, 200) and express it in the form of 275x + 200y, where $x, y \in \mathbb{Z}$.
- (d) State and prove Euler's theorem.

/455

6

| Cont

5

5

5

5

5

5

ŗ.

5

5

5

5. (a) Using Kruskal's algorithm, find the minimum spanning tree for the weighted graph of the following figure :

(b) Write the incidence matrix of the following graph :

(c) Using Prim's algorithm, find the minimum spanning tree for the weighted graph of the following figure :

(d) Find the chromatic polynomial and chromatic number for the graph of the following figure :

6

4

6

4

1455