PHY200 (MAJOR)

Student's Copy

2024

(NEP-2020)

(3rd Semester)

PHYSICS (MAJOR)

(Ray Optics and Optical Instruments)

Full Marks : 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick (\checkmark) the correct answer in the brackets provided :

1. When a lens is placed in air, lensmaker's formula takes which form?

$$(a) \quad \frac{1}{f} = (\mu - 1) \left[\frac{1}{R_1} - \frac{1}{R_2} \right] \qquad (\qquad)$$

$$(b) \quad f = (\mu - 1) \left[\frac{1}{R_1} - \frac{1}{R_2} \right] \qquad (\qquad)$$

$$(c) \quad \frac{1}{f} = (\mu - 1) \left[\frac{1}{R_1} + \frac{1}{R_2} \right] \qquad (\qquad)$$

$$(d) \quad \frac{1}{f} = (\mu + 1) \left[\frac{1}{R_1} - \frac{1}{R_2} \right] \qquad (\qquad)$$

/259

1

Contd.

 $1 \times 10 = 10$

- 2. If an object is taken at a very large distance from a concave mirror, then the image distance v in terms of radius of curvature R is given by
 - (a) v = 2R () (b) $v = \frac{R}{2}$ () (c) v = R () (d) v = 3R ()
- 3. A ray of light passes through a parallel-sided slab. If θ_i and θ_e are the angles of incidence and emergence respectively, then
 - (a) $\theta_i < \theta_e$ ()
 - (b) $\theta_i > \theta_e$ ()
 - (c) $\theta_i = \theta_e$ ()
 - (d) $\theta_i \theta_e = 30^\circ$ ()
- 4. If two lenses of power P_1 and P_2 are in contact, the effective power is given by
 - (a) P = 0 ()
 - (b) $P = P_1 + P_2$ ()
 - (c) $P = P_1 P_2$ ()
 - (d) $P = P_1 / P_2$ ()

/259

2

[Contd.

5. If R is the radius of curvature of a spherical refracting surface forming interface between two media with refractive indexes μ_1 and μ_2 , then the law of refraction at the spherical surface is given by

(a)
$$\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}$$
 ()

(b) $\frac{\mu_2}{v} + \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}$ ()

(c)
$$\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 + \mu_1}{R}$$
 ()

- (d) $\frac{\mu_1}{v} \frac{\mu_2}{u} = \frac{\mu_2 \mu_1}{R}$ ()
- **6.** For crossed lens, the ratio between the radii R_1 and R_2 is
 - (a) 1:6 () (b) 1:8 ()
 - (c) -1:6 ()
 - (d) -1:8 ()

7. The basic reason for chromatic aberration of a lens is

- (a) different wavelengths of light have different refractive indices ()
- (b) different wavelengths of light have the same refractive index ()
- (c) different wavelengths of light have different colours ()
- (d) different wavelengths of light have same colour ()

- 8. The condition for achromatism of two lenses in contact is
 - (a) $\frac{\omega_1}{f_1} + \frac{\omega_2}{f_2} = 0$ ()
 - (b) $\frac{\omega_1}{f_1} \frac{\omega_2}{f_2} = 0$ ()
 - (c) $\frac{\omega_1}{f_1} \frac{\omega_2}{f_2} = 0$ ()
 - $(d) \quad \omega_1 f_1 = \omega_2 f_2 \qquad (\qquad)$
- 9. The resolving power of microscope can be increased by (if v and μ are wavelengths of light in vacuum and refractive index of the object space respectively)
 - (a) increasing both v and μ ()
 (b) decreasing v and increasing μ ()
 (c) increasing v and decreasing μ ()
 (d) decreasing both v and μ ()
- 10. If β is the angle subtended by the image at the eye through the telescope and α is the angle at the unaided eye by a distant object, angular magnification *M* is
 - $(\alpha) \alpha / \beta$ ()
 - (b) β/α ()
 - (c) αβ ()
 - $(d) \alpha^2 \beta^2 \qquad ()$

/259

[Contd.

(SECTION : B-SHORT ANSWERS)

(Marks: 25)

Answer five questions, taking at least one from each Unit :

5×5=25

Unit—I

- 1. Explain Fermat's principle of extreme path.
- 2. Write the uses of concave and convex mirrors.

UNIT-II

- 3. Derive Abbe's sine condition.
- 4. What are cardinal points in a thick lens?

Unit—III

- 5. Explain the defects astigmatism and distortion. Explain how they may be minimized.
- 6. Write short notes on (a) scattering of light and (b) rainbow.

Unit-IV

- 7. Mention five distinctions between Ramsden's eyepiece and Huygens' eyepiece.
- 8. The objective of a telescope has a diameter 125 cm. If the main wavelength of incident light be 6000 Å, calculate the least angular separation of two stars which can be resolved by it.

(SECTION : C-DESCRIPTIVE)

(Marks : 40)

Ans	wer.	four questions, taking at least one from each Unit :	10×4=40				
		Unit—I					
1.	(a)	Derive the law of refraction at a spherical refracting surface.	5				
	(Ь)	Explain the refraction of light through a compound slab.	5				
2.	(a)	Derive the spherical mirror equation.	5				
	(Ъ)	State Fermat's principle and establish the law of refraction from principle.	this 5				
		Unit—II					
3. Explain nodal points. Show that the principal point coincides with the nodal points when the optical system is situated in the same medium. 2+8=1							
4.	(a)	What is the magnification in a thick lens?	2				
	(Ъ)	Find the focal length of two lenses separated by a distance d .	8				
		Unit—III					
5.	(a)	What do you mean by spherical aberration?	3				
	(b)	Discuss its minimization method by using crossed lens and plano-convex lenses.	two 7				
/259		6	[Contd.				

- 6. (a) What is chromatic aberration of a lens?
 (b) Derive an expression for the condition of achromatic of two lenses (i) when they are in contact and (ii) when separated by a distance d.
 8
 UNIT—IV
 7. (a) Explain the function of an eyepiece in an optical instrument.
 3
 - (b) Explain the construction and theory of Ramsden's and Huygens' eyepieces.
- 8. (a) What do you understand by visual angle and angular magnification? 3
 - (b) Give the construction and working of a simple microscope. Calculate its magnifying power. 5+2=7

PHY200 (MAJOR)

Student's Copy

2024

(NEP-2020)

(3rd Semester)

PHYSICS (MAJOR)

(Ray Optics and Optical Instruments)

Full Marks: 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks : 10)

Tick (\checkmark) the correct answer in the brackets provided :

1×10=10

1. When a lens is placed in air, lensmaker's formula takes which form?

(a)
$$\frac{1}{f} = (\mu - 1) \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$$
 ()
(b) $f = (\mu - 1) \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$ ()
(c) $\frac{1}{f} = (\mu - 1) \left[\frac{1}{R_1} + \frac{1}{R_2} \right]$ ()

(d)
$$\frac{1}{f} = (\mu + 1) \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$$
 ()

/259

- 2. If an object is taken at a very large distance from a concave mirror, then the image distance v in terms of radius of curvature R is given by
- (a) v = 2R () (b) $v = \frac{R}{2}$ () (c) v = R () (d) v = 3R ()
- A ray of light passes through a parallel-sided slab. If θ_i and θ_e are the angles of incidence and emergence respectively, then e,
- (a) $\theta_i < \theta_e$ () (b) $\theta_i > \theta_e$ () (c) $\theta_i = \theta_e$ ()

If two lenses of power P_1 and P_2 are in contact, the effective power is given ď, 4.

 $\theta_i - \theta_e = 30^\circ$

(q)

- (a) P = 0 ()
- (b) $P = P_1 + P_2$ ((c) $P = P_1 - P_2$ (
 - (d) $P = P_1 / P_2$ (

/259

20

(Contra

If R is the radius of curvature of a spherical refracting surface forming interface between two media with refractive indexes μ_1 and μ_2 , then the law of refraction at the spherical surface is given by ю.

(a)
$$\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}$$
 (
(b) $\frac{\mu_2}{v} + \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}$ (
(c) $\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 + \mu_1}{R}$ (

SI 6. For crossed lens, the ratio between the radii R_1 and R_2

μ<u>2</u> - μ₁ R

<u>112</u>

I

(q)

- H

- (a) 1:6 (
- (b) 1:8 (
- *(c)* –1:6 (
- (d) -1:8 (
- 7. The basic reason for chromatic aberration of a lens is
- different wavelengths of light have different refractive indices (a)
- different wavelengths of light have the same refractive index (q)
- different wavelengths of light have different colours 3
- different wavelengths of light have same colour (q)

/259

[Contd.

З

8. The condition for achromatism of two lenses in contact is

- (a) $\frac{\omega_1}{f_1} + \frac{\omega_2}{f_2} = 0$ ()
- (b) $\frac{\omega_1}{f_1} \frac{\omega_2}{f_2} = 0$ (
- $(c) \quad \frac{\omega_1}{f_1} \frac{\omega_2}{f_2} = 0 \qquad ($
- (d) $\omega_1 f_1 = \omega_2 f_2$ (
- The resolving power of microscope can be increased by (if v and μ are wavelengths of light in vacuum and refractive index of the object space respectively) 6
- (a) increasing both v and μ ()
- (b) decreasing v and increasing μ (
- (c) increasing v and decreasing μ (
- (d) decreasing both v and μ (
- 10. If β is the angle subtended by the image at the eye through the telescope distant object, angular and α is the angle at the unaided eye by amagnification M is
- (a) α/β () (b) β/α ()
- (c) αβ ()

 $\alpha^2 \beta^2$

(q)

/259

(SECTION : B-SHORT ANSWERS)

(Marks : 25)

Answer five questions, taking at least one from each Unit :

UNIT-I

1. Explain Fermat's principle of extreme path.

2. Write the uses of concave and convex mirrors.

UNIT-II

3. Derive Abbe's sine condition.

4. What are cardinal points in a thick lens?

UNIT-III

Explain the defects astigmatism and distortion. Explain how they may be minimized. in

6. Write short notes on (a) scattering of light and (b) rainbow.

UNIT-IV

- distinctions between Ramsden's cyepiece and Huygens' five 7. Mention cycpicce.
- The objective of a telescope has a diameter 125 cm. If the main wavelength of incident light be 6000 Å, calculate the least angular separation of two stars which can be resolved by it. ø

/259

s

Contd.

5×5=25

	10×4=40		ŝ	ŝ	u.	this	2	the n.	2+8=10	0	a 80		5	× 0	[Contd.
(SECTION : C-DESCRIPTIVE) (Marks : 40)	Answer four questions, taking at least one from each Unit :	UNITI	1. (a) Derive the law of refraction at a spherical refracting surface.	(b) Explain the refraction of light through a compound slab.	2. (a) Derive the spherical mirror equation.	(b) State Fermat's principle and establish the law of refraction from principle.	UNITII	3. Explain nodal points. Show that the principal point coincides with nodal points when the optical system is situated in the same mediu		4. (a) What is the magnification in a thick lens?	(b) Find the focal length of two lenses separated by a distance d .	UNITIII	5. (a) What do you mean by spherical aberration?	(b) Discuss its minimization method by using crossed lens and the plano-convex lenses.	/259 6

0	80		б	7
What is chromatic aberration of a lens?	Derive an expression for the condition of achromatic of two lenses (i) when they are in contact and (ii) when separated by a distance d .	UNITIV	Explain the function of an eyepiece in an optical instrument.	Explain the construction and theory of Ramsden's and Huygens' eyepicces.
(a)	6)		(a)	(2)
œ			5	

instrument.
optical
an
.Ц
eyepiece
an
of
function
the
Explain
(a)
1

What do you understand by visual angle and angular magnification? 8. (a)

З

5+2=7 Give the construction and working of a simple microscope. Calculate its magnifying power. **(**9

* * *

5