2024
(NEP-2020)
(2nd Semester)

PHYSICS (MAJOR/MINOR)

(Basic Electronics)

Full Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A—OBJECTIVE)

(Marks: 10)

Tick (✓) the correct answer in the brackets provided :

1×10=10

- 1. The leakage current across a p-n junction is due to
 - (a) impurity ()
 - (b) minority carriers (
 - (c) majority carriers ()
 - (d) junction capacitance ()

2.	The	ripple fac	tor	of a	a fu	ll-wa	ave	rect	tifie	ris					
	(a)	1.21	()											
	(b)	1.11	()											
	(c)	0.48	()											
	(d)	0.81	()											
3.	A p	-n junction	th	at r	adi	ates	ene	rgy	as	light	is	call	led a	a/an	
	(a)	photodiod	e		()									
	(b)	LED	()											
	(c)	Zener dio	de		()									
	(d)	Schottky	diod	le		()								
4.	Dop	oing concer	itra	tion	of	a p	n-p	tra	nsis	tor i	s lo	wes	st in	the	
	(a)	p-region		()										
	(b)	n-region		()										
	(c)	collector		()										
	(d)	emitter	()										

5.		a CB confi = 0 and I						output	cha	aract	eristic	s, th	e re	gion	abov	re
	(a)	saturatio	n reg	ion		()									
	(b)	input reg	gion		()										
	(c)	active reg	gion		()										
	(d)	cut-off re	gion		()										
6.	In t	he DC load	dline,	the	poi	nt wl	nere	the lo	adlii	ne in	tersec	ts th	e Ya	xis i	s	
	(a)	cut-off po	oint		()										
	(b)	critical p	oint		()										
	(c)	saturation	n poi	nt		()									
	(d)	subcritica	al poi	nt		()									
7.	The	efficiency	of a	cla	ss-A	\ am	plifi	er is								
	(a)	25%	()												
	(b)	35%	()												
	(c)	40%	()												
	(d)	60%	()												

8.	In a sign	negativ als is	e fee	dbacl	c am	plifier, phase shift between the input and output
	(a)	0°	()		
	(b)	90°	()		
	(c)	180°	()		
	(d)	360°	()		•
9.	The	output	volt	age in	n Ha	artley oscillator is the voltage drop across
	(a)	L_1	()		
	(b)	L_2	()		
	(c)	M	(),		
	(d)	C	()		•.
10.	In a	a CRO,	time	-varyi	ng s	signals are displayed in
	(a)	1-dime	nsio	n	()
	(b)	2-dime	nsio	n	()
	(c)	3-dime	nsio	n	()
	(d)	4-dime	nsio	n	()

(SECTION : B-SHORT ANSWERS)

(Marks: 15)

Answer five of the following, taking at least one from each Unit:

 $3 \times 5 = 15$

UNIT-I

- 1. Show that the rectification efficiency of half-wave rectifier is 40.6%.
- 2. Discuss in brief the static and dynamic resistances.

UNIT-II

- 3. Explain DC load line of a transistor with a neat diagram.
- 4. Prove the relation, $\alpha = \frac{\beta}{1+\beta}$, where the symbols have their usual meanings.

UNIT-III

- 5. With a suitable diagram, describe class-A amplifier.
- 6. Compare positive and negative feedback of an amplifier.

UNIT-IV

- 7. Write the Barkhausen's criterion for self-sustained oscillations.
- 8. Explain the measurement of voltage and current in a CRO.

(SECTION : C-DESCRIPTIVE)

(Marks : 50) Answer five of the following, taking at least one from each Unit: 10×5≈5(Unit—I 1. (a) Explain the current flow mechanism in reverse biased diode. (b) With graphical illustration, describe the I-V characteristics of a p-njunction diode. (c) What is voltage regulation? Explain how Zener diode is used as a voltage regulator. 1+3=4 2. (a) Describe the working of light-emitting diode. (b) Illustrate with diagram, the principle, construction and working of a photodiode. (c) Explain filter in electronics. Describe the filtering action of π filter. 1+3=4Unit-II 3. (a) What is thermal runaway in a transistor? (b) Discuss the construction and working of a p-n-p transistor with (c) What is CE configuration in an n-p-n transistor? Explain with diagram, the input and output characteristics of CE configuration in an n-p-n1+4=5 4. (a) Explain voltage and current gain of a transistor. (b) What is a voltage divider circuit? Show how it prevents operating point 3 (c) Describe base width modulation and transition time of a transistor.

3

Unit—III

5.	(a)	What is an R-C coupled amplifier? Explain in detail its frequency response.	4
	(b)	Describe the working, power output and efficiency of the following amplifiers with suitable diagrams: (i) Class-B push-pull amplifier (ii) Class-AB amplifiers	•6
6.	(a)	Write notes on power dissipation and distortion of an amplifier.	4
	(b)	Explain in particular the effect of negative feedback on the following: 2×3=	- 6
		(i) Input impedance	
		(ii) Gain	
		(iii) Noise	
		Unit—IV	
7	'. (a,	What are sinusoidal and relaxation oscillators? Explain the working principle of oscillators.	3
	(b	Mention at least three advantages of phase-shift oscillator.	3
	(c) Illustrate in detail Colpitts' oscillator using appropriate circuit diagram.	4
	8. (0	What is CRO? Draw and explain the block diagram of basic CRO.	3
	(1	b) With appropriate diagram, describe the specifications of a CRO and their significance.	3
	(c) Using a neat diagram, explain in detail the construction of CRT. What are electrostatic focusing and acceleration in an electron gun?	4

* * *

2024 (NEP-2020)

PHYSICS (MAJOR/MINOR)

(2nd Semester)

(Basic Electronics)

Full Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick (✓) the correct answer in the brackets provided:

 $1 \times 10 = 10$

- 1. The leakage current across a p-n junction is due to
 - (a) impurity ()
 - (b) minority carriers ()
 - (c) majority carriers ()
 - (d) junction capacitance ()

2.	The	ripple fa	ctor	of	a fu	ıll-wa	ave	rect	ifier	is			
	(a)	1.21	()									
	(b)	1.11	()									
	(c)	0.48	()									
	(d)	0.81	()									
3.	A p	-n junctio	n tl	nat	radi	ates	ene	rgy	as l	ight	is c	alled	a/an
	(a)	photodio	de		()							
	(b)	LED	()									
	(c)	Zener die	ode		()							
	(d)	Schottky	dio	de		()						
4.	Dop	oing conce	ntra	ation	ı of	a p	-n-p	trar	nsist	or is	low	est i	n the
	(a)	<i>p</i> -region)								
	(b)	n-region		()								
	(c)	collector		()								
	(d)	emitter		()								

5.			nfiguration $I_{\mathbf{E}} = 0$ is				outpu	t char	racteri	stics,	the	region	above
	(a)	satura	tion regio	n	()							
	(b)	input	region	()								
	(c)	active	region	()								
	(d)	cut-of	region	()								
6	. In	the DC	loadline, t	he po	int w	here	the lo	oadlin	e inter	sects	the	Yaxis	is
	(a)	cut-of	f point	()								
	(b)) critica	al point	()								
	(c)	satur	ation poir	nt	()							
	(d) subcr	itical poi	nt	()							
7	. Th	ne efficie	ency of a	class-	-A an	nplif	lier is						
	(a) 25%	()									
	(b) 35%	()									
	(c	40%	()									
	lo	1) 60%	í	ì									

8.	In a	negativ als is	e fee	dback	amp	lifier,	phas	se shi	ft bet	ween	the i	npu	t and	output
	(a)	0°	()										
	(b)	90°	()										
	(c)	180°	()										
	(d)	360°	()										
9.	The	output	volta	age in	Har	tley o	scilla	itor i	s the	volta	ge di	rop	acros	38
	(a)	L_1	()										
	(b)	L_2	()										
	(c)	M	()										
	(d)	С	()										
10.	In a	a CRO,	time-	-varyi	ng sig	gnals	are (displa	ayed	in				
	(a)	1-dime	nsior	ı	()								
	(b)	2-dime	nsior	1	()								
	(c)	3-dime	nsior	1	()								
	(d)	4-dime	nsion	1	()								

(SECTION : B-SHORT ANSWERS)

(Marks: 15)

Answer five of the following, taking at least one from each Unit:

 $3 \times 5 = 15$

UNIT-I

- 1. Show that the rectification efficiency of half-wave rectifier is 40.6%.
- 2. Discuss in brief the static and dynamic resistances.

UNIT-II

- 3. Explain DC load line of a transistor with a neat diagram.
- 4. Prove the relation, $\alpha = \frac{\beta}{1+\beta}$, where the symbols have their usual meanings.

UNIT-III

- 5. With a suitable diagram, describe class-A amplifier.
- 6. Compare positive and negative feedback of an amplifier.

UNIT-IV

- 7. Write the Barkhausen's criterion for self-sustained oscillations.
- 8. Explain the measurement of voltage and current in a CRO.

(SECTION : C-DESCRIPTIVE)

(Marks : 50)

An	swei	five of the following, taking at least one from each Unit:	5=50
1	. (a)	UNIT—I Explain the current flow mechanism in reverse biased diode.	2
	(b)	With graphical illustration, describe the $I-V$ characteristics of a $p-1$ junction diode.	1 4
	(c)		∙3=4
2.	(a)	Describe the working of light-emitting diode.	2
•	(b)	Illustrate with diagram, the principle, construction and working of a photodiode.	4
	(c)	Explain filter in electronics. Describe the filtering action of π filter.	3=4
		Unit—II	
3.	(a)	What is thermal runaway in a transistor?	2
	<i>(b)</i>	Discuss the construction and working of a p - n - p transistor with diagram.	3
	(c)	What is CE configuration in an n - p - n transistor? Explain with diagram, the input and output characteristics of CE configuration in an n - p - n transistor.	=5
4.	(a)	Explain voltage and current gain of a transistor.	3
	(b)	What is a voltage divider circuit? Show how it prevents operating point changes.	3
	(c)	Describe base width modulation and transition time of a transistor.	4

UNIT-III

response.	4
(b) Describe the working, power output and efficiency of the following amplifiers with suitable diagrams:	6
(i) Class-B push-pull amplifier	
(ii) Class-AB amplifiers	
6 (a) Write notes on power dissipation and distortion of an amplifier.	4
The state of the effect of negative feedback on the following: 2×3=	6
(i) Input impedance	
(ii) Gain	
(iii) Noise	
UNIT—IV	
 (a) What are sinusoidal and relaxation oscillators? Explain the working principle of oscillators. 	3
of the at least three advantages of phase-shift oscillator.	3
(b) Mention at least difference (c) Mention at least difference (c) Illustrate in detail Colpitts' oscillator using appropriate circuit diagram.	4
2 (a) What is CRO? Draw and explain the block diagram of basic CRO.	3
(b) With appropriate diagram, describe the specifications of a CRO and their significance.	3
(c) Using a neat diagram, explain in detail the construction of CRT. What are electrostatic focusing and acceleration in an electron gun?	4
