MATH160 (MAJOR)

Student's Copy

2024

(NEP-2020)

(2nd Semester)

MATHEMATICS (MAJOR)

(Elementary Number Theory)

Full Marks : 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick (✓) the correct answer in the brackets provided :

 $1 \times 10 = 10$

- 1. The greatest common divisor of 42823 and 6409 is
 - (a) 27 ()
 - (b) 17 ()
 - (c) 13 ()
 - (d) 23 ()

2. The least common multiple of 482 and 1687 is

- (a) 3476 ()
- (b) 4786 ()
- (c) 3374 ()
- (d) 5348 ()

/386

3. If n = 50000, then the value of $\tau(n)$ is

(a) 30 ()
(b) 40 ()
(c) 50 ()
(d) 45 ()

4. Which of the following sets is the complete residue system modulo 3?

(a) $\{-5, 14, 10\}$ () (b) $\{-12, 4, 5\}$ () (c) $\{12, 4, 6\}$ () (d) $\{13, 15, 17\}$ ()

5. $\varphi(35)$ equals (where φ is an Euler φ -function)

(a) 34 ()
(b) 42 ()
(c) 20 ()
(d) 24 ()

6. When 7^{23} is divided by 8, the remainder is

(a) 14 ()
(b) 8 ()
(c) 7 ()
(d) 9 ()

/386

[Contd.

7. If n is a positive integer and a is any integer relatively prime to n, then

- $(a) \quad a^{\phi(n)} \equiv 0 \pmod{n} \quad (\qquad)$
- (b) $a^{\phi(a)} \equiv 1 \pmod{a}$ ()
- (c) $a^{\phi(n)} \equiv 1 \pmod{n}$ ()
- $(d) \quad a^{\phi(n)} \equiv 2 \pmod{n} \quad ()$

8. If a = 2, p = 13, then the value of $\left(\frac{a}{p}\right)$ is

- (a) -1 ()
- *(b)* 0 ()
- (c) 1 ()
- (d) 2 ()

9. If n = 42, then the value of $\mu(n)$ is

- (a) 0 ()
- (b) -1 ()
- (c) -2 ()
- (d) 1 ()

10. If n = 99, then the value of $\sigma(n)$ is

(a)	445	()

- *(b)* 346 ()
- (c) 235 ()
- (d) 156 ()

(SECTION : B-SHORT ANSWERS)

(Marks: 15)

Answer five questions, taking at least one from each Unit :

Unit—I

1. If a | bc and gcd(a, b) = 1, then prove that a | c.

2. Prove that n(n+1)(2n+1) is a multiple of 6 for every natural number n.

Unit—II

- **3.** Solve the linear congruence $13x \equiv 10 \pmod{28}$.
- **4.** Prove that $n^5 n$ is divisible by 30.

5. Let p be an odd prime. Prove that

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$$

6. Solve the quadratic congruence $x^2 + 7x + 10 \equiv 0 \pmod{11}$.

UNIT-IV

7. For any positive integer n, prove that

$$f_{n+3} + f_n = 2f_{n+2}$$

8. Prove that
$$\frac{\phi(n)}{n} = \sum_{d \mid n} \frac{\mu(d)}{d}$$
.

/386

3×5=15

(SECTION : C-DESCRIPTIVE)

(Marks : 50)

Answer <i>five</i> questions,	taking at least one from each Unit :	10×5=50

UNIT-I

1.	(a)	State and prove division algorithm for integers.	б
	(b)	Find the values of x and y using the Euclidean algorithm satisfying the condition that gcd (1769, 2378) = $1769x + 2378y$.	4
2.	(a)	Prove the fundamental theorem of arithmetic.	5
	(Ъ)	Find the number of distinct positive integral divisors and their sum for the integer 55000.	5
Unit—II			
3.	(a)	State and prove Fermat's theorem.	5
	(Ь)	If $a \equiv b \pmod{m_1}$, $a \equiv b \pmod{m_2}$ and m is the least common multiple of m_1 and m_2 , then prove that $a \equiv b \pmod{m}$. Also prove the converse.	5
4.	(a)	Show that the set of $\{-3, -1, 3, 14, 12, 37, 57\}$ is the complete residue system modulo 7.	5
	(b)	State and prove Euler's theorem.	5

Unit—III

5. (a) Using Chinese remainder theorem, find the least positive integer x which satisfies

$$x \equiv 5 \pmod{7}$$

$$x \equiv 7 \pmod{11}$$

$$x \equiv 3 \pmod{13}$$

- (b) Let p be an odd prime and gcd(a, p) = 1. Prove that a is a quadratic residue of p if and only if $a^{(p-1)/2} \equiv 1 \pmod{p}$.
- 6. (a) Find the solutions of polynomial congruence

$$f(x) = x^2 + x + 7 \equiv 0 \pmod{3}$$

(b) Let p be an odd prime and gcd(a, p) = 1. Prove that

$$\left(\frac{a}{p}\right) = (-1)^n$$

where *n* denotes the number of integers in the set $S = \left\{a, 2a, 3a, ..., \left(\frac{p-1}{2}\right)a\right\}$, where remainders upon division by *p* exceed $\frac{p}{2}$.

UNIT-IV

- 7. (a) Prove that the functions ϕ , μ , σ , τ are all multiplicative arithmetic functions.
 - (b) Prove that for each integer $n \ge 1$,

$$\sum_{d|n} \mu(d) = \begin{cases} 1, & \text{if } n = 1 \\ 0, & \text{if } n > 1 \end{cases}$$

5

5

5

5

[Contd.

- 8. (a) Prove that the greatest common divisor of two Fibonacci numbers is again a Fibonacci number, specially, gcd (u_m, u_n) = u_d, where d = gcd (m, n).
 - (b) If f is a multiplicative arithmetic function and F is defined by $F(n) = \sum_{d|n} f(d)$, then prove that F is also multiplicative. 5

* * *

/386

MATH160 (MAJOR)

Student's Copy

2024

(NEP-2020)

(2nd Semester)

MATHEMATICS (MAJOR)

(Elementary Number Theory)

Full Marks : 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks : 10)

Tick (\checkmark) the correct answer in the brackets provided :

1×10=10

- 1. The greatest common divisor of 42823 and 6409 is
 - (a) 27 ()
 - (b) 17 ()
 - (c) 13 ()
 - (d) 23 ()

2. The least common multiple of 482 and 1687 is

- (a) 3476 ()
- (b) 4786 ()
- (c) 3374 ()
- (d) 5348 ()

/386

Contd.

3. If n = 50000, then the value of $\tau(n)$ is

(a) 30 ()
(b) 40 ()
(c) 50 ()
(d) 45 ()

4. Which of the following sets is the complete residue system modulo 3?

- (a) $\{-5, 14, 10\}$ ()
- (b) $\{-12, 4, 5\}$ ()
- (c) {12, 4, 6} ()
- (d) {13, 15, 17} ()

5. $\varphi(35)$ equals (where φ is an Euler φ -function)

(a) 34 ()
(b) 42 ()
(c) 20 ()
(d) 24 ()

6. When 7^{23} is divided by 8, the remainder is

(a) 14 ()
(b) 8 ()
(c) 7 ()
(d) 9 ()

/386

7. If n is a positive integer and a is any integer relatively prime to n, then

- $(a) \quad a^{\phi(n)} \equiv 0 \pmod{n} \quad ()$
- (b) $a^{\phi(\alpha)} \equiv 1 \pmod{\alpha}$ ()
- (c) $a^{\phi(n)} \equiv 1 \pmod{n}$ ()
- $(d) \quad a^{\phi(n)} \equiv 2 \pmod{n} \quad ()$

8. If a = 2, p = 13, then the value of $\left(\frac{a}{p}\right)$ is

- (a) -1 () (b) 0 ()
- (c) 1 ()
- (d) 2 ()

9. If n = 42, then the value of $\mu(n)$ is

(a) 0 () (b) -1 () (c) -2 () (d) 1 ()

10. If n = 99, then the value of $\sigma(n)$ is

(a) 445 ()
(b) 346 ()
(c) 235 ()
(d) 156 ()

(SECTION : B-SHORT ANSWERS)

(Marks: 15)

Answer five questions, taking at least one from each Unit :

Unit—I

1. If a | bc and gcd(a, b) = 1, then prove that a | c.

2. Prove that n(n+1)(2n+1) is a multiple of 6 for every natural number n.

UNIT-II

- **3.** Solve the linear congruence $13x \equiv 10 \pmod{28}$.
- **4.** Prove that $n^5 n$ is divisible by 30.

Unit—III

5. Let p be an odd prime. Prove that

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$$

6. Solve the quadratic congruence $x^2 + 7x + 10 \equiv 0 \pmod{11}$.

UNIT-IV

7. For any positive integer n, prove that

$$f_{n+3} + f_n = 2f_{n+2}$$

8. Prove that
$$\frac{\phi(n)}{n} = \sum_{d \mid n} \frac{\mu(d)}{d}$$
.

/386

[Contd.

3×5=15

(SECTION : C-DESCRIPTIVE)

(Marks : 50)

Answer five questions,	taking at least one from each Unit :	10×5=50
------------------------	--------------------------------------	---------

UNIT-I

1.	(a)	State and prove division algorithm for integers.	6
	(Ъ)	Find the values of x and y using the Euclidean algorithm satisfying the condition that $gcd(1769, 2378) = 1769x + 2378y$.	4
2.	(a)	Prove the fundamental theorem of arithmetic.	5
	(b)	Find the number of distinct positive integral divisors and their sum for the integer 55000.	5
		Unit—II	
з	i. (a,) State and prove Fermat's theorem.	5
	(b) If $a \equiv b \pmod{m_1}$, $a \equiv b \pmod{m_2}$ and m is the least common multiple of m_1 and m_2 , then prove that $a \equiv b \pmod{m}$. Also prove the converse.	5

- 4. (a) Show that the set of {-3, -1, 3, 14, 12, 37, 57} is the complete residue system modulo 7.
 - (b) State and prove Euler's theorem.

/386

Contd.

5

Unit—III

- 5. (a) Using Chinese remainder theorem, find the least positive integer x which satisfies
 - $x \equiv 5 \pmod{7}$ $x \equiv 7 \pmod{11}$ $x \equiv 3 \pmod{13}$
 - (b) Let p be an odd prime and gcd(a, p) = 1. Prove that a is a quadratic residue of p if and only if a^{(p-1)/2} ≡ 1 (mod p).
- 6. (a) Find the solutions of polynomial congruence

$$f(x) = x^2 + x + 7 \equiv 0 \pmod{3}$$

(b) Let p be an odd prime and gcd(a, p) = 1. Prove that

$$\left(\frac{a}{p}\right) = (-1)^n$$

where *n* denotes the number of integers in the set $S = \left\{a, 2a, 3a, ..., \left(\frac{p-1}{2}\right)a\right\}$, where remainders upon division by *p* exceed $\frac{p}{2}$.

- UNIT-IV
- 7. (a) Prove that the functions ϕ , μ , σ , τ are all multiplicative arithmetic functions.
 - (b) Prove that for each integer $n \ge 1$,

$$\sum_{d|n} \mu(d) = \begin{cases} 1, & \text{if } n = 1 \\ 0, & \text{if } n > 1 \end{cases}$$

/386

[Contd

5

5

5

- 8. (a) Prove that the greatest common divisor of two Fibonacci numbers is again a Fibonacci number, specially, $gcd(u_m, u_n) = u_d$, where d = gcd(m, n).
 - (b) If f is a multiplicative arithmetic function and F is defined by $F(n) = \sum_{d|n} f(d)$, then prove that F is also multiplicative. 5

* * *

,