Student's Copy

MATH100 (MAJOR)

2024

(NEP-2020)

(1st Semester)

MATHEMATICS (MAJOR)

(Vector Analysis)

Full Marks: 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick (✓) the correct answer in the brackets provided :

- 1. For any two vectors \vec{u} and \vec{v} , if $\vec{v} = \frac{d\vec{u}}{dt}$, then $\frac{d}{dt} \left(\vec{u} \times \frac{d\vec{u}}{dt} \right)$ is equal to
 - (a) 0 () (b) $\frac{d\vec{u}}{dt} \times \frac{d\vec{u}}{dt}$ () (c) $\vec{u} \times \frac{d\vec{u}}{dt}$ () (d) $\vec{u} \times \frac{d^2\vec{u}}{dt^2}$ ()

/204

Contd.

1×10=10

- **2.** The derivative of any constant vector c is
 - (a) 2 ()
 - (b) c ()
 - (c) 0 ()
 - (d) 1 ()
- **3.** If $\vec{r} = \sin t \hat{i} + \cos t \hat{j} + t \hat{k}$, then the value of the acceleration is
 - (a) $\cos t\hat{i} \sin t\hat{j} + \hat{k}$ ()
 - (b) $-\sin t\hat{i} \cos t\hat{j} + \hat{k}$ ()
 - (c) $-\sin t\hat{i} \cos t\hat{j}$ ()
 - (d) $\sin t\hat{i} + \cos t\hat{j}$ ()
- **4.** If \vec{a} is a constant vector, then grad $(\vec{a} \cdot \vec{r})$ is equal to

(a)
$$\vec{a} \cdot \vec{r}$$
 ()
(b) \vec{r} ()
(c) \vec{a} ()
(d) 0 ()

/204

[Contd.

MATH100 (MAJOR)

Student's Copy

2024

(NEP-2020)

(1st Semester)

MATHEMATICS (MAJOR)

(Vector Analysis)

Full Marks: 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick (\checkmark) the correct answer in the brackets provided :

1. For any two vectors \vec{u} and \vec{v} , if $\vec{v} = \frac{d\vec{u}}{dt}$, then $\frac{d}{dt} \left(\vec{u} \times \frac{d\vec{u}}{dt} \right)$ is equal to

(a) 0 () (b) $\frac{d\vec{u}}{dt} \times \frac{d\vec{u}}{dt}$ () (c) $\vec{u} \times \frac{d\vec{u}}{dt}$ () (d) $\vec{u} \times \frac{d^2\vec{u}}{dt^2}$ ()

/204

Contd.

1×10=10

2. The derivative of any constant vector c is

- (a) 2 ()
- (b) c ()
- (c) 0 ()
- (d) 1 ()
- **3.** If $\vec{r} = \sin t \hat{i} + \cos t \hat{j} + t \hat{k}$, then the value of the acceleration is
 - (a) $\cos t \hat{i} \sin t \hat{j} + \hat{k}$ ()
 - (b) $-\sin t\hat{i} \cos t\hat{j} + \hat{k}$ ()
 - (c) $-\sin t\hat{i} \cos t\hat{j}$ ()
 - (d) $\sin t \hat{i} + \cos t \hat{j}$ ()
 - **4.** If \vec{a} is a constant vector, then grad $(\vec{a} \cdot \vec{r})$ is equal to

/204

[Contd.

5. If $\phi(x, y, z) = x^2 + y^2 + z^2$, then the value of grad ϕ at the point (1, 2, 3) is

- (a) $2\hat{i} + 3\hat{j} + 6\hat{k}$ ()
- (b) $2\hat{i} + 4\hat{j} + 6\hat{k}$ ()
- (c) $3\hat{i} + 4\hat{j} + 5\hat{k}$ ()
- (d) $3\hat{i} + 2\hat{j} + 5\hat{k}$ ()
- 6. If $\vec{F} = (5xy 6x^2)\hat{i} + (2y 4x)\hat{j}$, then the value of $\int_C \vec{F} d\vec{r}$ along the curve C in the xy-plane, $y = x^3$ from the point (1, 1) to (2, 8), is
 - (a) 25 ()
 - (b) 15 ()
 - (c) 45 ()
 - (d) 35 ()
 - 7. The circulation of \vec{F} around the curve C, where $\vec{F} = y\hat{i} + z\hat{j} + x\hat{k}$ and C is the circle $x^2 + y^2 = 1$, z = 0, is
 - (a) π ()
 - (b) $-\pi$ ()
 - (c) 2π ()
 - (d) -2π ()

- 8. If V is the closed region bounded by the planes x = 0, y = 0, z = 0 and 2x + 2y + z = 4, then the value of $\iiint_V \nabla \cdot \vec{F} d\vec{V}$ is
 - (a) $\frac{8}{3}$ () (b) $\frac{3}{8}$ () (c) $-\frac{8}{3}$ () (d) $\frac{5}{3}$ ()
- **9.** If \vec{F} is a continuously differentiable vector point function in a region V and S is a closed surface enclosing V, then $\int \vec{F} \cdot \hat{n} d\vec{S}$ is equal to
 - (a) $\int \operatorname{div} \times \vec{F} d\vec{V}$ ()
 - (b) $\int \operatorname{div} \cdot \vec{F} \, d\vec{V}$ ()
 - (c) $\int \operatorname{curl} \times \vec{F} d\vec{V}$ ()
 - (d) $\int \operatorname{curl} \cdot \vec{F} \, d\vec{V}$ ()
- 10. If C is a simple closed curve in the xy-plane not enclosing the origin, then the value of $\int_C \vec{F} d\vec{r}$, where $\vec{F} = \frac{-y\hat{i} + x\hat{j}}{x^2 + y^2}$, is

(a)
$$x^2 + y^2$$
 ()
(b) $-y\hat{i} + x\hat{j}$ ()
(c) 0 ()

(d) $\frac{-y\,i+x\,j}{x^2+y^2}$ ()

| Contd

(SECTION : B-SHORT ANSWERS)

(Marks: 15)

Answer five questions, taking at least one from each Unit :

UNIT-I

- **1.** Prove that a necessary and sufficient condition that a proper vector \vec{u} has a constant length is $\vec{u} \cdot \frac{d\vec{u}}{dt} = 0.$
- **2.** A particle moves along the curve $x = 2t^2$, $y = t^2 4t$, z = -t 5, where t is the time. Find the components of its velocity and acceleration at time t = 1 in the direction of $\hat{i} - 2\hat{j} + 2\hat{k}$.

UNIT-II

- **3.** Show that $\nabla^2\left(\frac{1}{r}\right) = 0$.
- **4.** Find the directional derivative of $\phi(x, y, z) = 4xz^3 3x^2y^2z$ at (2, -1, 2) in the direction of $2\hat{i} - 3\hat{j} + 6\hat{k}$.

UNIT-III

- 5. If $\vec{A} = (2y+3)\hat{i} + xy\hat{j} + (yz-x)\hat{k}$, evaluate $\int_C \vec{A}d\vec{r}$, along the paths C, $x = 2t^2$, y = t, $z = t^3$ from t = 0 to t = 1.
- **6.** Evaluate $\iint_{C} \vec{A} \cdot \vec{n} \, d\vec{S}$, where $\vec{A} = z\hat{i} + x\hat{j} 3y^2z\hat{k}$ and S is the surface of the cylinder $x^2 + y^2 = 16$ included in the first octant between z = 0 and z = 5.

3×5=15

Unit—IV

7. Evaluate by Stokes' theorem

$$\int_C (e^x dx + 2y \, dy - dz)$$

where C is the curve $x^2 + y^2 = 4$, z = 2.

8. If S is any closed surface enclosing a volume V and $\vec{F} = x\hat{i} + 2y\hat{j} + 3z\hat{k}$, show that $\int_{S} \vec{F} \cdot \vec{n} \, d\vec{S} = 6V$.

(SECTION : C-DESCRIPTIVE)

(Marks : 50)

Answer five questions, taking at least one from each Unit :

UNIT-I

1. (a) If \vec{w} is a constant vector, \vec{r} and \vec{s} are vector functions of a scalar variable t and if $\frac{d\vec{r}}{dt} = \vec{w} \times \vec{r}$, $\frac{d\vec{s}}{dt} = \vec{w} \times \vec{s}$, then show that $\frac{d}{dt}(\vec{r} \times \vec{s}) = \vec{w} \times (\vec{r} \times \vec{s})$ 4

(b) Find \vec{T} , \vec{N} , k for the plane curve $\vec{r}(t) = t\hat{i} + (\log \cos t)\hat{j}$, $-\frac{\pi}{2} < t < \frac{\pi}{2}$. 3

(c) Find the unit tangent vector and arc length of the curve $\vec{r}(t) = 2\cos t\hat{i} + 2\sin t\hat{j} + \sqrt{5}t\hat{k}, \ 0 \le t \le \pi$

2. (a) If $\vec{r}(t) = a \cos t \hat{i} + a \sin t \hat{j} + a \tan \alpha \hat{k}$, then find the values of

$$\left| \frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} \right| \text{ and } \frac{d\vec{r}}{dt} \cdot \left(\frac{d^2\vec{r}}{dt^2} \times \frac{d^3\vec{r}}{dt^3} \right)$$

(b) Suppose $\phi(x, y, z) = xy^2 z$ and $\vec{A} = xz\hat{i} - xy^2\hat{j} + yz^2\hat{k}$. Find $\frac{\partial^3}{\partial x^2 \partial z} (\phi \vec{A})$ at the point (2, -1, 1).

/204

| Conta

З

10×5=50

UNIT-II

3. (a) Show that
$$\nabla^2 r^n = n(n+1)r^{n-2}$$
, where n is constant.

- (b) Let $\vec{A} = (6xy + z^3, 3x^2 z, 3xz^2 y)$. Show that \vec{A} is irrotational and that $\vec{A} = \text{grad } \phi$, for some scalar point function ϕ . Find ϕ .
- 4. (a) Find $(\vec{A} \times \nabla) \times \vec{B}$ at the point (1, -1, 2), if $\vec{A} = xz^2\hat{i} + 2y\hat{j} 3xz\hat{k}$ and $\vec{B} = 3xz\hat{i} + 2yz\hat{i} - z^2\hat{k}.$ 4
 - (b) If \vec{w} is a constant vector and $\vec{v} = \vec{w} \times \vec{r}$, then prove that $\vec{w} = \frac{1}{2} \operatorname{curl} \vec{v}$. 3

(c) Prove that
$$\operatorname{div}(r^n \vec{r}) = (n+3)r^n$$
.

UNIT-III

- 5. (a) Evaluate $\int \vec{F} \cdot d\vec{r}$, where $\vec{F} = xy\hat{i} + (x^2 + y^2)\hat{j}$ and C is the x-axis from x = 2 to x = 4 and the line x = 4 from y = 0 to y = 12. 5
 - (b) Evaluate $\iiint_{V} \vec{F} \cdot dV$, where $\vec{F} = 2xz\hat{i} x\hat{j} + y^2\hat{k}$ and V is the region bounded by the surfaces x = 0, y = 0, $z = x^2$ and z = 4.
- 6. (a) Evaluate $\int_C \{yz \, dx + (xz+1) \, dy + xy \, dz\}$, where C is any path from (1, 0, 0) to (2, 1, 4).
 - (b) Evaluate $\iint_{i=1}^{i=1} \vec{F} \cdot \vec{n} \cdot dS$, where $\vec{F} = yz\hat{i} + zx\hat{j} + xy\hat{k}$ and S is that part of the surface of the sphere $x^2 + y^2 + z^2 = 1$ which lies in the first octant. 5

4

6

5

UNIT-IV

- 7. (a) Verify Stokes' theorem for $\vec{A} = (y z + 2)\hat{i} + (yz + 4)\hat{j} xz\hat{k}$, where S is the surface of the cube x = 0, y = 0, z = 0 and x = 2, y = 2, z = 2 above the xy-plane.
 - (b) Show that

$$\int_{S} (ax\hat{i} + by\hat{j} + cz\hat{k}) \cdot \vec{n} \, dS = \frac{4}{3}\pi (a + b + c)$$

where S is the surface of the sphere $x^2 + y^2 + z^2 = 1$.

- 8. (a) State Stokes' theorem and hence apply for $\vec{F} = y\hat{i} + z\hat{j} + x\hat{k}$, where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary.
 - (b) Evaluate by Green's theorem $\int_C (x^2 - \cosh y) \, dx + (y + \sin x) \, dy$

where C is the rectangle with vertices (0, 0), $(\pi, 0)$, $(\pi, 1)$, (0, 1).

* * *

5

5

5

Student's Copy

MATH100 (MAJOR)

2024

(NEP-2020)

(1st Semester)

MATHEMATICS (MAJOR)

(Vector Analysis)

Full Marks : 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick (\checkmark) the correct answer in the brackets provided :

1. For any two vectors \vec{u} and \vec{v} , if $\vec{v} = \frac{d\vec{u}}{dt}$, then $\frac{d}{dt} \left(\vec{u} \times \frac{d\vec{u}}{dt} \right)$ is equal to

(a) 0 () (b) $\frac{d\vec{u}}{dt} \times \frac{d\vec{u}}{dt}$ () (c) $\vec{u} \times \frac{d\vec{u}}{dt}$ () (d) $\vec{u} \times \frac{d^2\vec{u}}{dt^2}$ ()

/204

1×10=10

- **2.** The derivative of any constant vector c is
 - (a) 2 ()
 - (b) c ()
 - (c) 0 ()
 - (d) 1 ()
- **3.** If $\vec{r} = \sin t \hat{i} + \cos t \hat{j} + t \hat{k}$, then the value of the acceleration is
 - (a) $\cos t\hat{i} \sin t\hat{j} + \hat{k}$ ()
 - (b) $-\sin t \hat{i} \cos t \hat{j} + \hat{k}$ ()
 - $(c) \sin t \hat{i} \cos t \hat{j} \qquad ()$
 - (d) $\sin t \hat{i} + \cos t \hat{j}$ ()
- **4.** If \vec{a} is a constant vector, then grad $(\vec{a} \cdot \vec{r})$ is equal to
 - (a) $\vec{a} \cdot \vec{r}$ () (b) \vec{r} () (c) \vec{a} () (d) 0 ()

/204

Consi

5. If $\phi(x, y, z) = x^2 + y^2 + z^2$, then the value of grad ϕ at the point (1, 2, 3) is

- (a) $2\hat{i} + 3\hat{j} + 6\hat{k}$ ()
- (b) $2\hat{i} + 4\hat{j} + 6\hat{k}$ ()
- (c) $3\hat{i} + 4\hat{j} + 5\hat{k}$ ()
- (d) $3\hat{i} + 2\hat{j} + 5\hat{k}$ ()
- 6. If $\vec{F} = (5xy 6x^2)\hat{i} + (2y 4x)\hat{j}$, then the value of $\int_C \vec{F} d\vec{r}$ along the curve C in the xy-plane, $y = x^3$ from the point (1, 1) to (2, 8), is
 - (a) 25 ()
 - *(b)* 15 ()
 - (c) 45 ()
 - (d) 35 ()
 - 7. The circulation of \vec{F} around the curve C, where $\vec{F} = y\hat{i} + z\hat{j} + x\hat{k}$ and C is the circle $x^2 + y^2 = 1$, z = 0, is
 - (a) π ()
 - (b) $-\pi$ ()
 - (c) 2π ()
 - (d) -2π ()

| Contd.

- **8.** If V is the closed region bounded by the planes x = 0, y = 0, z = 0 and 2x + 2y + z = 4, then the value of $\iiint_V \nabla \cdot \vec{F} \, d\vec{V}$ is
 - (a) $\frac{8}{3}$ () (b) $\frac{3}{8}$ () (c) $-\frac{8}{3}$ () (d) $\frac{5}{3}$ ()
- **9.** If \vec{F} is a continuously differentiable vector point function in a region V and S is a closed surface enclosing V, then $\int \vec{F} \cdot \hat{n} \, d\vec{S}$ is equal to
 - (a) $\int \operatorname{div} \times \vec{F} d\vec{V}$ ()
 - (b) $\int \operatorname{div} \cdot \vec{F} d\vec{V}$ ()
 - (c) $\int \operatorname{curl} \times \vec{F} d\vec{V}$ ()
 - (d) $\int \operatorname{curl} \cdot \vec{F} \, d\vec{V}$ ()

10. If C is a simple closed curve in the xy-plane not enclosing the origin, then the value of $\int_C \vec{F} d\vec{r}$, where $\vec{F} = \frac{-y\hat{i} + x\hat{j}}{x^2 + y^2}$, is (a) $x^2 + y^2$ () (b) $-y\hat{i} + x\hat{j}$ () (c) 0 () (d) $\frac{-y\hat{i} + x\hat{j}}{x^2 + y^2}$ ()

/204

[Contd.

(SECTION : B-SHORT ANSWERS)

(Marks: 15)

Answer five questions, taking at least one from each Unit :

UNIT—I

- 1. Prove that a necessary and sufficient condition that a proper vector \vec{u} has a constant length is $\vec{u} \cdot \frac{d\vec{u}}{dt} = 0$.
- 2. A particle moves along the curve $x = 2t^2$, $y = t^2 4t$, z = -t 5, where t is the time. Find the components of its velocity and acceleration at time t = 1 in the direction of $\hat{i} 2\hat{j} + 2\hat{k}$.

Unit—II

- **3.** Show that $\nabla^2\left(\frac{1}{r}\right) = 0$.
- **4.** Find the directional derivative of $\phi(x, y, z) = 4xz^3 3x^2y^2z$ at (2, -1, 2) in the direction of $2\hat{i} 3\hat{j} + 6\hat{k}$.

UNIT-III

5. If $\vec{A} = (2y+3)\hat{i} + xy\hat{j} + (yz-x)\hat{k}$, evaluate $\int_C \vec{A}d\vec{r}$, along the paths C, $x = 2t^2$, y = t, $z = t^3$ from t = 0 to t = 1.

6. Evaluate $\iint_{S} \vec{A} \cdot \vec{n} \, d\vec{S}$, where $\vec{A} = z\hat{i} + x\hat{j} - 3y^2z\hat{k}$ and S is the surface of the cylinder $x^2 + y^2 = 16$ included in the first octant between z = 0 and z = 5.

- UNIT-IV
- 7. Evaluate by Stokes' theorem

$$\int_C (e^x dx + 2y \, dy - dz)$$

where C is the curve $x^2 + y^2 = 4$, z = 2.

8. If S is any closed surface enclosing a volume V and $\vec{F} = x\hat{i} + 2y\hat{j} + 3z\hat{k}$, show that $\int_{S} \vec{F} \cdot \vec{n} d\vec{S} = 6V$.

(SECTION : C-DESCRIPTIVE)

Answer five questions, taking at least one from each Unit :

Unit—I

1. (a) If \vec{w} is a constant vector, \vec{r} and \vec{s} are vector functions of a scalar variable t and if $\frac{d\vec{r}}{dt} = \vec{w} \times \vec{r}$, $\frac{d\vec{s}}{dt} = \vec{w} \times \vec{s}$, then show that $\frac{d}{dt}(\vec{r} \times \vec{s}) = \vec{w} \times (\vec{r} \times \vec{s})$

(b) Find \vec{T} , \vec{N} , k for the plane curve $\vec{r}(t) = t\hat{i} + (\log \cos t)\hat{j}$, $-\frac{\pi}{2} < t < \frac{\pi}{2}$. 3

(c) Find the unit tangent vector and arc length of the curve $\vec{r}(t) = 2\cos t\hat{i} + 2\sin t\hat{j} + \sqrt{5}t\hat{k}, \ 0 \le t \le \pi$

2. (a) If $\vec{r}(t) = a \cos t \hat{i} + a \sin t \hat{j} + a \tan \alpha \hat{k}$, then find the values of

$$\left| \frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} \right| \text{ and } \frac{d\vec{r}}{dt} \cdot \left(\frac{d^2\vec{r}}{dt^2} \times \frac{d^3\vec{r}}{dt^3} \right)$$
 5

(b) Suppose $\phi(x, y, z) = xy^2 z$ and $\vec{A} = xz\hat{i} - xy^2\hat{j} + yz^2\hat{k}$. Find $\frac{\partial^3}{\partial x^2 \partial z} (\phi \vec{A})$ at the point (2, -1, 1).

/204

| Contd.

5

10×5=50

4

Unit—II

3. (a) Show that
$$\nabla^2 r^n = n(n+1)r^{n-2}$$
, where n is constant.

- (b) Let $\vec{A} = (6xy + z^3, 3x^2 z, 3xz^2 y)$. Show that \vec{A} is irrotational and that \vec{A} = grad ϕ , for some scalar point function ϕ . Find ϕ .
- 4. (a) Find $(\vec{A} \times \nabla) \times \vec{B}$ at the point (1, -1, 2), if $\vec{A} = xz^2\hat{i} + 2y\hat{j} 3xz\hat{k}$ and $\vec{B} = 3xz\hat{i} + 2uz\hat{i} - z^2\hat{k}$
 - (b) If \vec{w} is a constant vector and $\vec{v} = \vec{w} \times \vec{r}$, then prove that $\vec{w} = \frac{1}{2} \operatorname{curl} \vec{v}$.
 - Prove that $\operatorname{div}(r^{n}\vec{r}) = (n+3)r^{n}$. (c) 3

UNIT-III

- 5. (a) Evaluate $\int_{C} \vec{F} \cdot d\vec{r}$, where $\vec{F} = xy\hat{i} + (x^2 + y^2)\hat{j}$ and C is the x-axis from x = 2 to x = 4 and the line x = 4 from y = 0 to y = 12.
 - (b) Evaluate $\iiint \vec{F} \cdot dV$, where $\vec{F} = 2xz\hat{i} x\hat{j} + y^2\hat{k}$ and V is the region bounded by the surfaces x = 0, y = 0, $z = x^2$ and z = 4. 5
- 6. (a) Evaluate $\int \{yz \, dx + (xz+1) \, dy + xy \, dz\}$, where C is any path from (1, 0, 0) to (2, 1, 4).
 - (b) Evaluate $\iint \vec{F} \cdot \vec{n} \cdot dS$, where $\vec{F} = yz\hat{i} + zx\hat{j} + xy\hat{k}$ and S is that part of the surface of the sphere $x^2 + y^2 + z^2 = 1$ which lies in the first octant.

/204

Contd

3

4

6

4

5

5

UNIT-IV

- - (b) Show that

$$\int_{S} (ax\hat{i} + by\hat{j} + cz\hat{k}) \cdot \vec{n} \, dS = \frac{4}{3}\pi \left(a + b + c\right)$$

where S is the surface of the sphere $x^2 + y^2 + z^2 = 1$.

- 8. (a) State Stokes' theorem and hence apply for $\vec{F} = y\hat{i} + z\hat{j} + x\hat{k}$, where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary.
 - (b) Evaluate by Green's theorem

 $\int_C (x^2 - \cosh y) \, dx + (y + \sin x) \, dy$

where C is the rectangle with vertices (0, 0), $(\pi, 0)$, $(\pi, 1)$, (0, 1).

* * *

/204

5

5

5

5