2024

(NEP—2020) (1st Semester)

CHEMISTRY (MAJOR/MINOR)

(Inorganic Chemistry-I)

Full Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick (✓) the correct answer in the brackets provided:

 $1 \times 10 = 10$

- According to de Broglie's equation, the _____ of a particle in motion is directly proportional to wavelength.
 - (a) energy ()
 - (b) velocity ()
 - (c) momentum ()
 - (d) amplitude ()

2.	The	p_x , p_y and p_z orbitals are called degenerate orbitals as they have
	(a)	same orientation in space ()
	(b)	equal energy ()
	(c)	same size ()
	(d)	equal number of electron ()
3.	The	orbital with $n=2$, $l=1$ refers to
	(a)	2p ()
	(b)	2s ()
	(c)	1s ()
	(d)	3p ()
4.	Whi	ich one of the following is having the highest electron affinity?
	(a)	Fluorine ()
	(b)	Chlorine ()
	(c)	Oxygen ()
	(d)	Hydrogen ()

5	According to modern periodic law, the physical and chemical properties of elements are periodic functions of their														
	(a)	atomic	weig	hts	()									
	(b)	mass r	umb	er	()									
	(c)	atomic	num	ber	()									
	(d)	electro	nic co	onfigu	ration	ı	()							
6.		ong the		n isoel	ectro	nic s	pecie	es, w	hich	one	is ha	ving	the	smal	lest
	(a)	Mg ²⁺	()											
	(b)	Na+	()											
	(c)	O ²⁻	()											
	(d)	N ³⁻	()											
7.	Out	t of the fo	llowi	ng mo	lecule	s, wł	nich	one l	nas t	rigon	al pla	nar (geom	etry?	i
	(a)	NH ₃	()											
	(b)	BF ₃	()											
	(c)	PCl ₃	()											
	(d)	IF ₂	()											

8. According to VSEPR theory, the correct order of increasing electron pair repulsion is

(a)
$$lp-lp < bp-bp < bp-lp$$
 ()

(b)
$$bp-bp < lp-lp < bp-lp$$
 (

(c)
$$lp-lp < bp-lp < bp-bp$$
 ()

(d)
$$bp-bp < bp-lp < lp-lp$$
 ()

9. The oxidation number of Cl in Cl₂O₇ is

10. Ellingham diagram represents a graph of

(a)
$$\Delta H$$
 versus T ()

(SECTION : B-SHORT ANSWERS)

(Marks: 15)

Answer five questions, taking at least one from each Unit:

 $3 \times 5 = 15$

UNIT-I

- 1. State and explain Heisenberg's uncertainty principle.
- 2. Write a short note on Hund's rule of maximum multiplicity.

UNIT—II

- 3. Explain with reasons how the atomic radius varies in a period.
- 4. Define periodicity in properties of elements. What is the cause of periodicity?

UNIT—III

- 5. Compare the properties of ionic and covalent compounds.
- Write the hybridization of central atom and shapes of the BeF₂ and SF₄ using VSEPR theory.

UNIT-IV

- Define oxidation number. Find the oxidation numbers of chromium atom in K₂Cr₂O₇ and H₂CrO₄.
- 8. Explain the van Arkel-de Boer process of refining.

(SECTION : C-DESCRIPTIVE)

(Marks : 50)

Answer five questions, taking at least one from each Unit:

10×5=5

UNIT-I

1. (a) State and explain Aufbau principle. Write its limitations.

3+2:

- (b) The uncertainty in the position and velocity of a particle are 10-10 m and 5.27×10-24 m sec-1 respectively. Calculate the mass of the particle. (Given $h = 6.6 \times 10^{-34} \text{ kg m}^2 \text{ sec}^{-1}$)
- 2. (a) Write a note on the stability of half-filled and fully filled orbitals. Write the electronic configurations of chromium (Z = 24) and copper (Z = 29). 3+2

(b) What is radial wave function? Write the radial probability curves for 1s, 2s and 2p orbitals.

UNIT-II

- 3. (a) What is electron affinity? Explain why the electron affinities of halogens are very high but the electron affinities of noble gases are zero. 1+
 - (b) Define screening effect and effective nuclear charge. Calculate the effective nuclear charge experienced by 4s electron in potassium atom (Z = 19).2+
- 4. (a) Explain the term 'electronegativity'. Explain the factors which affect the electron affinity. 1+
 - (b) What is ionization energy? Give reasons why the ionization energy of Ga is higher than Al and that of Tl is higher than In. 14

UNIT-III

- i. (a) What is a polar covalent bond? Write the factors that cause the polarity in a covalent bond.
 2+3=5
 - (b) Explain the hybridization and shapes of NH₃ and ClF₃ molecules on the basis of VSEPR theory. $2\frac{1}{2}+2\frac{1}{2}=5$
- (a) What is meant by polarization of ions? What are the factors affecting the polarizability of an anion and polarizing power of a cation? 1+4=5
 - (b) What is hybridization? Discuss sp^3 and sp^3d^2 hybridization with suitable examples. 1+4=5

UNIT-IV

7. (a) Balance the following redox reaction by ion-electron method in acidic medium:
5

$$MnO_4^- + C_2O_4^{2-} \rightarrow Mn^{2+} + CO_2$$

- (b) What do you understand by the equivalent weight of reducing agent? Calculate the equivalent weight of Na₂S₂O₃·5H₂O in acidic medium (mol. wt. = 248).
- (a) What is meant by electrochemical series? Discuss the application of electrochemical series to check feasibility of the chemical reactions.
 2+3=5
 - (b) Write notes on the following:

 $2\frac{1}{2}+2\frac{1}{2}=5$

- (i) Electrolytic reduction
- (ii) Hydrometallurgy

. . .

2024

(NEP-2020)

(1st Semester)

CHEMISTRY (MAJOR/MINOR)

(Inorganic Chemistry-I)

Full Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick (✓) the correct answer in the brackets provided:

 $1 \times 10 = 10$

- According to de Broglie's equation, the _____ of a particle in motion is directly proportional to wavelength.
 - (a) energy ()
 - (b) velocity ()
 - (c) momentum ()
 - (d) amplitude ()

2.	The	e p_x , p_y and p_z orbitals are called degenerate orbitals as they have
		same orientation in space ()
	(b)	equal energy ()
	(c)	same size ()
	(d)	equal number of electron ()
3.	The	e orbital with $n=2$, $l=1$ refers to
	(a)	2p ()
	(b)	2s ()
	(c)	1s ()
	(d)	3 <i>p</i> ()
4.	Wh	ich one of the following is having the highest electron affinity?
	(a)	Fluorine ()
	(b)	Chlorine ()
	(c)	Oxygen ()
	(d)	Hydrogen ()

5.	Accor eleme	ding to mo	oderr eriod	n periodic law, the physical and chemical propert ic functions of their	ties of
	(a) E	atomic wei	ghts	()	
	(b) 1	mass num	ber	()	
	(c)	atomic nu	mber	. ()	
	(d)	electronic	conf	iguration ()	
6.		ong the give c radius?	ven i	soelectronic species, which one is having the sn	nallest
	(a)	${\rm Mg}^{2+}$	()	
	(b)	Na ⁺	()	
	(c)	O ²⁻	()	
	(d)	N ³⁻	()	
	7 . O	ut of the fol	lowir	ng molecules, which one has trigonal planar geome	try?
	(a	NH ₃	()	
	(I	b) BF ₃	_()	
	(c) PC1 ₃	()	
		(d) IF ₃	()	

	00
repulsion is	According
ω 5	5
OBERN	/SEDD
шеогу	
, me	ř
COLLECT	
or der	
\$	2
	increasing
TO TO TO	-
pair	

(a)
$$lp$$
- $lp < bp$ - $bp < bp$ - lp ()

(b)
$$bp-bp < lp-lp < bp-lp$$
 ()

(c)
$$lp-lp < bp-lp < bp-bp$$
 ()

(d)
$$bp-bp < bp-lp < lp-lp$$
 (

9. The oxidation number of Cl in Cl₂O₇ is

10. Ellingham diagram represents a graph of

(a)
$$\Delta H$$
 versus T ()

SECTION: B—SHORT ANSWERS)

(Marks: 15)

Inswer five questions, taking at least one from each Unit : $3 \times 5 = 15$

UNIT-I

State and explain Heisenberg's uncertainty principle

ņ Write a short note on Hund's rule of maximum multiplicity.

UNIT-II

- ω Explain with reasons how the atomic radius varies in a period
- 4. periodicity? periodicity in properties of elements. What is the cause of

UNIT-III

- Ģ Compare the properties of ionic and covalent compounds
- 9 Write the hybridization of central atom and shapes of the BeF_2 and SF_4 using VSEPR theory.

UNIT-IV

- 7 Define oxidation number. Find the oxidation numbers of chromium atom in K₂Cr₂O₇ and H₂CrO₄.
- œ Explain the van Arkel-de Boer process of refining.

(SECTION : C—DESCRIPTIVE)

(Marks : 50)

Answer five questions, taking at least one from each Unit: UNIT-I

10×5=50

- <u>a</u> State and explain Aufbau principle. Write its limitations. 3+2=5
- 6 The particle. (Given $h = 6.6 \times 10^{-34} \text{ kg m}^2 \text{ sec}^{-1}$) and 5.27×10^{-24} m sec⁻¹ respectively. Calculate the mass of the uncertainty in the position and velocity of a particle are 10^{-10} m S
- ņ (a) Write a note on the stability of half-filled and fully filled orbitals. Write the electronic configurations of chromium (Z = 24) and copper (Z = 29).
- Ð What is radial wave function? Write the radial probability curves for 1s, 2s and 2p orbitals. UNIT-II 2+3=5
- 3. (a) What is electron affinity? Explain why the electron affinities of halogens are very high but the electron affinities of noble gases are zero. 1+4=5
- Œ Define (Z = 19).effective nuclear charge experienced by 4s electron in potassium atom screening effect and effective nuclear charge. Calculate the 2+3=5
- 4. (a) Explain the term 'electronegativity'. Explain the factors which affect the electron affinity. 1+4=5
- Ð What is ionization energy? Give reasons why the ionization energy of Ga is higher than Al and that of Tl is higher than In.

UNIT—III

What is a polar covalent bond? Write the factors that cause the polarity

2+3=5

ù

(a)

in a covalent bond.

Explain the hybridization and shapes of NH3 and ClF3 molecules on 21/2+21/2=5

6 æ **(b)** What is meant by polarization of ions? What are the factors affecting the basis of VSEPR theory. the polarizability of an anion and polarizing power of a cation? 1+4=5

ð

What

is

hybridization? Discuss

 sp^3

and sp^3d^2 hybridization

with

1+4=5

suitable examples.

7 **a** Balance the following redox reaction by ion-electron method in acidic medium: $MnO_4^- + C_2O_4^{2-} \rightarrow Mn^{2+} + CO_2$ UNIT-IV S

œ 6 <u>a</u> What do you understand by the equivalent weight of reducing agent? What is meant by electrochemical series? Discuss the application of (mol. wt. = 248).Calculate the equivalent weight of $Na_2S_2O_3 \cdot 5H_2O$ in acidic medium 2+3=5

electrochemical series to check feasibility of the chemical reactions 2+3=5

Œ) Write notes on the following:

21/2+21/2=5

Hydrometallurgy Electrolytic reduction
