PHY/VI/CC/17

Student's Copy

2024

(CBCS)

(6th Semester)

PHYSICS

TENTH PAPER

(Electromagnetic Theory)

Full Marks : 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick (✓) the correct answer in the brackets provided :

1×10=10

1. The direction of the induced e.m.f. in a circuit is given by

- (a) Faraday's law ()
- (b) Fleming's left-hand rule ()
- (c) Lenz's law ()
- (d) Ampere's law ()

/557

2. The differential form of Ampere's law in magnetostatics is

- (a) $\vec{\nabla} \times \vec{B} = -\mu_0 \vec{J}$ () (b) $\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$ () (c) $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ () (d) $\vec{\nabla} \times \vec{B} = \frac{\partial \vec{B}}{\partial t}$ ()
- 3. Which of the following has coulomb as the unit?
 - $(a) \oint \vec{H} \cdot \vec{al} \qquad ()$ $(b) \oint \vec{E} \cdot \vec{al} \qquad ()$ $(c) \oint \vec{D} \cdot \vec{ds} \qquad ()$ $(d) \oint \vec{E} \cdot \vec{ds} \qquad ()$

4. The speed of light in free space is

(a)
$$\frac{1}{\sqrt{2\varepsilon_0\mu_0}}$$
 ()
(b) $\sqrt{\frac{\varepsilon_0}{\mu_0}}$ ()
(c) $\sqrt{\frac{\mu_0}{\varepsilon_0}}$ ()
(d) $\frac{1}{\sqrt{\varepsilon_0\mu_0}}$ ()

/557

| Contd.

- 5. When the phase angle between the E_x and E_y components is 0° or 180°, the polarization is
 - (a) elliptical ()
 - (b) circular ()
 - (c) linear ()
 - (d) perpendicular ()
- In a conductor, the phase difference between displacement and conduction current is
 - (a) $\frac{\pi}{4}$ () (b) $\frac{\pi}{2}$ () (c) π () (d) zero ()
- 7. The momentum of charged particle, \vec{p} in an electromagnetic field is given by
 - (a) $\vec{p} = m\vec{a} + q\vec{v}$ ()
 - (b) $\vec{p} = m\vec{v} + q\vec{A}$ ()
 - (c) $\vec{p} = mc^2 + q\vec{B}$ ()
 - $(d) \vec{p} = m\vec{a} q\vec{v} \qquad ()$

[Contd.

lation		
5		
the		
gives		
relation §		
dispersion		
the		
wave,		
electromagnetic	the	
any	con	
For	betwe	
ø		

- wave number k and velocity of the wave va)
- wave number k and frequency w (q)
- ---velocity of the wave v and intensity 3
- (d) wave number k and intensity i (
- The law governing the distribution of radiant energy over wavelength for a black body at fixed temperature is referred to as ġ,
- (a) Kirchhoff's law ()
- (b) Planck's law (
- (c) Wien's formula (
- (d) Lambert's law (
- What is needed to achieve population inversion? 10
- (a) To excite most of the atoms
- To bring most of the atoms to ground state (q)
- (c) To achieve stable condition ()
- - To reduce the time of production of laser (q)

Contd.

/557

(SECTION : B-SHORT ANSWERS)
(Marks : 15) Answer the following questions :
UNITI
1. Deduce the integral form of Faraday's law of electromagnetic induction.
OR
2. Using Maxwell's equation, show that $E_1^{\parallel} = E_2^{\parallel}$ at the boundary between
two different media.
UNITII
3. Show that the electromagnetic waves are transverse in nature.
OR
4. In an electromagnetic wave in empty space whose electric field is given by $\vec{E} = 60 \ \hat{x}e^{-i(10^8t+4z)}$. Determine the magnetic field of the wave.
UNITIII
5. State and explain Brewster's law in electromagnetic waves.
OR
6. Using Maxwell's equations, show that an electromagnetic wave is damped inside a conducting medium.
UNIT-IV
7. Explain the non-uniqueness of the magnetic and scalar potential.
OR
8. Derive an equation for scalar potential of magnetic dipole.

•

Contd.

-

ю

NIT-V KOL

State and prove Kirchhoff's law for radiation. 6

ő

10. What do you mean by optical pumping?

SECTION : C-DESCRIPTIVE

(Marks : 50)

10×5=3.

Answer the following questions :

UNIT--I

- å expressed in differential form and give the physical meaning of the can induction Faraday's law of electromagnetic Prove that, equation. (d ÷
- Deduce an expression for the energy stored in an inductor. (Q
- A field of 0.02 tesla acts at right angles to a coil of area 0.01 squaremeter with 50 turns. The coil is removed from the field in $\frac{1}{10}$ th of a second. Find the e.m.f. produced in it. <u></u>

ő

- Discuss the reason which led Maxwell to modify Ampere's law by introducing the concept of displacement current. Hence derive the new relation. **2**. (a)
- (b) Derive the Maxwell's equation

$$\vec{\nabla} \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$

where \vec{D} is electric displacement and \vec{J} is the current density.

/557

Cor

UNIT-II

Deduce the general equations for electromagnetic wave satisfied by $ec{E}$ and \vec{B} in free space. Write the solutions for it. 3. (a)

9

4 ы about momentum and radiation pressure electromagnetic wave? What do you know (q)

g

also Derive necessary equation to define the Poynting vector and explain the Poynting theorem. 4. (a)

9

4

sectional area of $10^{-10} \mathrm{~m^2}$, find the value of Poynting vector and the If a 500 watt laser beam is concentrated by a lens into a crossamplitude of electric field. (q)

UNIT--III

Deduce the expression for reflection and transmission coefficients of an another wave travelling from one dielectric media to at normal incidence. electromagnetic dielectric media ທ່

10

g

- What is the total internal reflection of an electromagnetic wave? Show that the wave is totally reflected back at total internal reflection. Ø ø.
- 4+2=6
- 4 Calculate the skin depth for an electromagnetic wave of wavelength conductivity $\sigma = 6 \times 10^7 \ \Omega^{-1} \ m^{-1}$ and permeability $\mu = 4\pi \times 10^{-7} \ H/m$. of medium conducting Ø 'n space) free 3 m (in (q)

UNIT-IV

- 9 Deduce Maxwell's equations in terms of vector and scalar potentials and express them using D'Alembertian operator. (a) 2.
- 4 Obtain the expression of Lorentz force in terms of vector and scalar potentials. (q)

Contd.

	÷	L

6+4=10 gauge transformation and explain how the Lorentz gauge is used to explain Discuss the transformation of electromagnetic wave by using Lorentz the wave theory. ŝ

UNIT-V

7+3=10Starting from quantum hypothesis, establish Planck's radiation law. Deduce Wien's law from Planck's radiation law. ō.

OR

Derive the necessary equations to express the Einstein's A and B coefficients in LASER system. **10**. (a)

9

4

đ considering be achieved by Explain how LASER action can three-level laser system. (q)

* * *

24G-16

PHY/VI/CC/17

Student's Copy

2024

(CBCS)

(6th Semester)

PHYSICS

TENTH PAPER

(Electromagnetic Theory)

Full Marks : 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks : 10)

Tick (\checkmark) the correct answer in the brackets provided :

 $1 \times 10 = 10$

1. The direction of the induced e.m.f. in a circuit is given by

(a) Faraday's law ()

(b) Fleming's left-hand rule (

(c) Lenz's law ()

(d) Ampere's law (

/557

Contd.

-

2. The differential form of Ampere's law in magnetostatics is 3. Which of the following has coulomb as the unit? $\vec{\nabla} \times \vec{B} = -\mu_0 \vec{J}$ at at $\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$ at at ∮में ् वा ¢D. ds (d) $\vec{\nabla} \times \vec{B} = \vec{G}$ ∳E · di <u>ی</u> (a) (q) (a) (q) 0

4. The speed of light in free space is

¢Ē.ds

(q)

/557

3

Control

- When the phase angle between the E_x and E_y components is 0° or 180°, the polarization is ю.
- (a) elliptical (
- (b) circular (
- (c) linear (
- (d) perpendicular (
- 6. In a conductor, the phase difference between displacement and conduction current is
- (a) $\frac{\pi}{4}$ ()
 - (b) $\frac{\pi}{2}$ (
- (c) ± ()
- (d) zero ()
- in an electromagnetic field is ¢Ω, The momentum of charged particle, given by ۲.
- $(a) \vec{p} = m\vec{a} + q\vec{v} \quad ()$
- $(b) \quad \vec{p} = m\vec{v} + q\vec{A} \quad ($
- (c) $\vec{p} = mc^2 + q\vec{B}$ (
- $(d) \vec{p} = m\vec{a} q\vec{v} \quad ()$
- /557

Contd.

relation
the
gives
ion relation gives the relatio
the dispersion
the
wave,
electromagnetic the
or any e etween ti
For bety
ø

- wave number k and velocity of the wave vØ
- wave number k and frequency w (q)
- velocity of the wave v and intensity iછ
- wave number k and intensity i(q)
- The law governing the distribution of radiant energy over wavelength for a black body at fixed temperature is referred to as ō.
- (a) Kirchhoff's law (
- (b) Planck's law (
- (c) Wien's formula (
- (d) Lambert's law (
- What is needed to achieve population inversion? 10
- (a) To excite most of the atoms
- To bring most of the atoms to ground state (q)
- (c) To achieve stable condition
- To reduce the time of production of laser (q)

/557

[Contd.

(SECTION : B-SHORT ANSWERS)

(Marks : 15)

3×5=15

Answer the following questions :

UNIT-I

 $_1$. Deduce the integral form of Faraday's law of electromagnetic induction.

OR

2. Using Maxwell's equation, show that $E_1^{\parallel} = E_2^{\parallel}$ at the boundary between two different media.

UNIT-II

Show that the electromagnetic waves are transverse in nature. ė

g

4. In an electromagnetic wave in empty space whose electric field is given $\vec{E} = 60 \,\hat{x}e^{-i(10^8t+4z)}$. Determine the magnetic field of the wave. à

UNIT-III

State and explain Brewster's law in electromagnetic waves. . م

0R

Using Maxwell's equations, show that an electromagnetic wave is damped inside a conducting medium. . ف

UNIT-INU

7. Explain the non-uniqueness of the magnetic and scalar potential.

0R

8. Derive an equation for scalar potential of magnetic dipole.

[Contd.

s

					=50		-1	69	(1)		0			7	
UNIT-V O State and and the fact for fact and attom.	o. otate and prove Kirchholt's law lor radiation	10. What do you mean by optical pumping?	(SECTION : C-DESCRIPTIVE)	(Marks : 50)	Answer the following questions : 10×5=50	UNITI	 (a) Prove that, Faraday's law of electromagnetic induction can be expressed in differential form and give the physical meaning of the equation. 	(b) Deduce an expression for the energy stored in an inductor.	(c) A field of 0.02 tesla acts at right angles to a coil of area 0.01 square- meter with 50 turns. The coil is removed from the field in $\frac{1}{10}$ th of a second. Find the e.m.f. produced in it.	OR	 (a) Discuss the reason which led Maxwell to modify Ampere's law by introducing the concept of displacement current. Hence derive the new relation. 	(b) Derive the Maxwell's equation	$\vec{d} \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$	where \vec{D} is electric displacement and \vec{J} is the current density.	

/557

ø

Const

	1		
	1	1	ľ
	ł	F	
	1	5	;
	4	5	2
1	i.	_)

- 9 Deduce the general equations for electromagnetic wave satisfied by \vec{E} and B in free space. Write the solutions for it. 3. (a)
- 4 б What do you know about momentum and radiation pressure electromagnetic wave? (q)

0K N

also equation to define the Poynting vector and explain the Poynting theorem. Derive necessary 4. (a)

9

sectional area of 10^{-10} m², find the value of Poynting vector and the If a 500 watt laser beam is concentrated by a lens into a crossamplitude of electric field. (q)

4

UNIT-III

10 5. Deduce the expression for reflection and transmission coefficients of an another dielectric media to from one dielectric media at normal incidence. travelling electromagnetic wave

0R

- 4+2=6What is the total internal reflection of an electromagnetic wave? Show that the wave is totally reflected back at total internal reflection. 6. (a)
- Calculate the skin depth for an electromagnetic wave of wavelength conductivity Jo $\sigma = 6 \times 10^7 \ \Omega^{-1} \ m^{-1}$ and permeability $\mu = 4\pi \times 10^{-7} \ H/m$. medium conducting space) in a 3 m (in free *(q)*

4

UNIT-IV

- 9 Deduce Maxwell's equations in terms of vector and scalar potentials and express them using D'Alembertian operator. 7. (a)
- 4 Obtain the expression of Lorentz force in terms of vector and scalar potentials. (q)

/557

ntz ain 6+4=10		1W. 7+3=10	a 6 4 6	
OR 8. Discuss the transformation of electromagnetic wave by using Lorentz gauge transformation and explain how the Lorentz gauge is used to explain the wave theory.	UNITV	establish Planck's radiation la ation law.	 OR 10. (a) Derive the necessary equations to express the Einstein's A and B coefficients in LASER system. (b) Explain how LASER action can be achieved by considering a three-level laser system. 	*
co		6	10.	

(

e , . . .

/557

24G-160

80