PHY/VI/CC/16

Student's Copy

2024

(CBCS)

(6th Semester)

PHYSICS

NINTH PAPER

(Quantum Mechanics)

Full Marks: 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick (\checkmark) the correct answer in the brackets provided :

1×10=10

1. In the interaction of light with matter, light behaves

- (a) as a wave ()
- (b) as a wave and as a particle ()
- (c) as a particle ()
- (d) neither as wave nor as particle ()

- According to Wien's displacement law, the intensity maximum of blackbody radiation shifts towards _____ with increase in temperature of the blackbody.
 - (a) shorter wavelength ()
 - (b) longer wavelength ()
 - (c) lower frequency ()
 - (d) Intensity is independent of temperature ()
- A stationary state is that for which the probability of finding the particle at a point in space is
 - (a) a function of time (t) ()
 - (b) a function of position (x) ()
 - (c) a function of both x and t ()
 - (d) independent of both x and t ()
- 4. The wave function $\psi(\vec{r}, t)$ is said to be normalized, if
 - (a) $\int |\psi(\vec{r}, t)| d\tau = 1$ ()
 - (b) $\int |\psi(\vec{r},t)|^2 d\tau = 1$ ()
 - (c) $\int |\psi(\vec{r},t)|^2 d\tau = 1 / N^2$ ()
 - (d) $\int |\psi^*(\vec{r},t)| d\tau = 1$ ()

/556

[Contd.

5. If \tilde{A} is a linear operator and C is a constant, then

- (a) $\tilde{A}C = C\tilde{A}$ () (b) $\tilde{A}C = \tilde{A}$ () (c) $\tilde{A} = \tilde{A} + C$ () (d) $\tilde{A}^2 = C\tilde{A}$ ()
- 6. The value of $\left[\hat{x}, \frac{\partial}{\partial x}\right]$ is (a) 0 () (b) 1 () (c) -1 () (d) ∞ ()

7. Which of the following is correct?

(a)
$$[\tilde{\sigma}^2, \tilde{\sigma}_x] = 2i\sigma_z$$
 ()
(b) $[\tilde{\sigma}^2, \tilde{\sigma}_x] \neq 0$ ()
(c) $[\tilde{\sigma}^2, \tilde{\sigma}_x] = 0$ ()
(d) $[\tilde{\sigma}^2, \tilde{\sigma}_x] = \sigma_z$ ()

- 8. The eigenvalue of L^2 is
 - (a) $l^2 \hbar^2$ ()
 - (b) $l(l+1)\hbar^2$ ()
 - (c) $(l+1)\hbar^2$ ()
 - (d) $(l+1)^2 \hbar^2$ ()
- 9. If S be a linear vector space, which of the following is not true?
 (a) If |A⟩ ∈ S, then c|A⟩ ∈ S, where c is a complex number ()
 - (b) If $|A\rangle$ and $|B\rangle$ belong to S, then $(|A\rangle + |B\rangle) \in S$ ()
 - (c) For any $|A\rangle \in S$, there exists another element $|A'\rangle \in S$, such that $|A\rangle + |A'\rangle \neq |0\rangle$ ()
 - (d) If $|A\rangle \in S$, $|A\rangle + |0\rangle = |A\rangle$, where $|0\rangle$ is a null element ()
- 10. $|A\rangle$ is said to be normalized, if
 - (a) $|\langle A | A \rangle|^{1/2} = 1$ ()
 - (b) $|\langle A | A \rangle|^{1/2} = 0$ ()

(c)
$$\langle A | A \rangle = 1$$
 ()

(d) $\langle A | A \rangle = 0$ ()

/556

(SECTION : B-SHORT ANSWERS)

(Marks: 15)

Answer the following :

Unit—I

1. Show that the maximum change in the wavelength of incident X-ray photon occurs when photon gets scattered in the direction of incidence.

OR

2. Show that the group velocity v_q is equal to the particle velocity v.

UNIT—II

3. If $\psi_1(x, t)$ and $\psi_2(x, t)$ are two solutions of Schrödinger wave equation for a given potential V(x, t), then show that $\psi = a_1\psi_1 + a_2\psi_2$ is also a solution of the Schrödinger wave equation.

OR

4. For the wave function $\psi(x) = \sqrt{a} e^{-ax}$, calculate the probability of finding the particle within x = 1/a and x = 2/a.

UNIT-III

5. For the step potential

$$V(x) = \begin{cases} 0, & \text{for } x < 0 \\ V_0, & \text{for } x > 0 \end{cases}$$

show that wave function vanishes in the region x > 0 if $V_0 \rightarrow \infty$.

OR

6. Calculate the transmission probability if electrons of energy 2 eV are incident on a barrier of 3 eV height and 0.4 nm width.

[Contd.

3×5=15

7. The ground-state of a harmonic oscillator is given by $\psi(x) = Ae^{-\alpha^2 x^2}$, where $\alpha^2 = \frac{k}{2\hbar\omega}$ and k is the force constant. Show that the mean potential energy $\langle V \rangle = \frac{1}{4}\hbar\omega$.

OR

- Calculate the radial probability function for the ground-state of hydrogen atom.
 - Unit—V
- Write down the addition and multiplication conditions to be satisfied by a vector space.

OR

10. Describe the Gram-Schmidt orthogonalization process.

(SECTION : C-DESCRIPTIVE)

(Marks : 50)

Answer the following :

UNIT-I

- (a) Explain photoelectric effect. Derive the Einstein's photoelectric equation. Explain the characteristics of photoelectric phenomena based on Einstein's equation.
 - (b) Explain why Compton effect is not observed with visible light.

OR

- 2. (a) Describe Davisson and Germer's experiment and interpret its results. 7
 - (b) On the basis of uncertainty principle, explain why the wave and particle aspect of a physical entity are not observed simultaneously. 3

10×5=50

Unit—II

- 3. (a) Derive the one-dimensional Schrödinger's time-dependent wave equation for a particle of mass m moving under the action of a conservative force field derivable from V(x), hence deduce Schrödinger's time-independent wave equation.
 - (b) Discuss the physical interpretation of the wave function ψ. Explain Born's interpretation of the wave function.
 4

OR

- 4. (a) A particle travelling with energy E is incident on a potential barrier of height V_0 and width a. Show that there is a finite probability of transmission even if $E < V_0$.
 - (b) Define probability current density. Derive the equation of continuity for probability current density.

UNIT-III

- 5. (a) What are Hermitian operators? Show that \hat{p}_x is Hermitian. 1+2=3
 - (b) The ground-state wave function for the hydrogen atom is

$$\Psi = \frac{1}{\sqrt{\pi a_0^3}} e^{-r/a_0}$$

Show that the average distance of the electron from the nucleus is $1 \cdot 5 a_0$.

(c) Show that $\left\langle p^2 \right\rangle = \left(\frac{\pi\hbar}{L}\right)^2$ for the wave function

$$\psi(x) = \begin{cases} \sqrt{\frac{2}{L}} \sin \frac{\pi x}{L}, & 0 < x < L \\ 0, & |x| > L \end{cases}$$

OR

- 6. (a) Derive the expressions for normalized wave function and total linear momentum for a free particle of mass m moving in a rectangular potential box with sides a, b and c parallel to x, y and z axes respectively.
 - (b) Show that $[x^n, \hat{p}_x] = i\hbar nx^{n-1}$, where n is a positive integer.

Contd.

6

4

4

3

з

- 7. (a) Derive the commutation relation for the components of angular momentum L_x , L_y , L_z and show that all the three components commute with $L^2 = L_x^2 + L_y^2 + L_z^2$ 4+4=8
 - (b) Find the eigenvalues of Pauli spin matrix $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

OR

- 8. (a) Describe Stern-Gerlach experiment with a suitable schematic diagram. Discuss how the experiment demonstrated the existence of two spin states of the electron.
 - (b) Show that the magnetic dipole moment of an electron due to its orbital motion is quantized. Hence define Bohr magneton. 3+1=4

UNIT-V

- 9. (a) Apply Gram-Schmidt process to derive orthogonal basis vectors (v_1, v_2, v_3) from the basis vectors $u_1 = (1, 1, 1)$, $u_2 = (-1, 1, 0)$ and $u_3 = (1, 2, 1)$.
 - (b) For the states $|\psi\rangle = 3i|v_1\rangle 7i|v_2\rangle$ and $|\phi\rangle = -|v_1\rangle + 2i|v_2\rangle$ where $|v_1\rangle$ and $|v_2\rangle$ are orthonormal bases.
 - (i) Evaluate $|\psi + \phi\rangle$ and $\langle \psi + \phi |$.
 - (ii) Show that $\langle \psi | \phi \rangle = \langle \phi | \psi \rangle^*$.

OR

- 10. (a) Write down the procedure to construct orthonormal basis set from non-orthonormal vectors $(v_1, v_2, v_3, \dots, v_n)$.
 - (b) Construct orthonormal basis set from the given vectors $u_1 = (1, 2, 3)$, $u_2 = (3, -1, 1)$ and $u_3 = (1, 1, -2)$.

/556

24G-160

2

4

2

4

6

2+2=4

Student's Copy

HY VI CC 16

2024

(CBCS)

(6th Semester)

PHYSICS

NINTH PAPER

(Quantum Mechanics)

Full Marks : 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick (\checkmark) the correct answer in the brackets provided :

1×10=10

1. In the interaction of light with matter, light behaves

- (a) as a wave ()
- (b) as a wave and as a particle ()
- (c) as a particle ()
- (d) neither as wave nor as particle ()

- According to Wien's displacement law, the intensity maximum of blackbody radiation shifts towards _____ with increase in temperature of the blackbody.
 - (a) shorter wavelength ()
 (b) longer wavelength ()
 (c) lower frequency ()
 (d) Intensity is independent of temperature ()
- A stationary state is that for which the probability of finding the particle at a point in space is
 - (a) a function of time (t) ()
 - (b) a function of position (x) ()
 - (c) a function of both x and t ()
 - (d) independent of both x and t ()

4. The wave function $\psi(\vec{r}, t)$ is said to be normalized, if

(a)
$$\int |\psi(\vec{r},t)| d\tau = 1$$
 ()

(b)
$$\int ||\psi(\vec{r},t)|^2 d\tau = 1$$
 ()

(c)
$$\int |\psi(\vec{r},t)|^2 d\tau = 1/N^2$$
 ()

(d)
$$\int |\psi^*(\vec{r},t)| d\tau = 1$$
 ()

/556

Contd.

5. If \tilde{A} is a linear operator and C is a constant, then

- (a) $\tilde{A}C = C\tilde{A}$ () (b) $\tilde{A}C = \tilde{A}$ () (c) $\tilde{A} = \tilde{A} + C$ () (d) $\tilde{A}^2 = C\tilde{A}$ ()
- 6. The value of $\left[\hat{x}, \frac{\hat{\partial}}{\partial x}\right]$ is (a) 0 () (b) 1 () (c) -1 () (d) ∞ ()
- 7. Which of the following is correct?

(a)
$$[\tilde{\sigma}^2, \tilde{\sigma}_x] = 2i\sigma_z$$
 ()
(b) $[\tilde{\sigma}^2, \tilde{\sigma}_x] \neq 0$ ()
(c) $[\tilde{\sigma}^2, \tilde{\sigma}_x] = 0$ ()
(d) $[\tilde{\sigma}^2, \tilde{\sigma}_x] = \sigma_z$ ()

- 8. The eigenvalue of L^2 is
 - (a) $l^2 \hbar^2$ ()
 - (b) $l(l+1)\hbar^2$ ()
 - (c) $(l+1)\hbar^2$ ()
 - (d) $(l+1)^2 \hbar^2$ ()

9. If S be a linear vector space, which of the following is not true?

- (a) If $|A\rangle \in S$, then $c|A\rangle \in S$, where c is a complex number ()
- (b) If $|A\rangle$ and $|B\rangle$ belong to S, then $(|A\rangle + |B\rangle) \in S$ ()
- (c) For any $|A\rangle \in S$, there exists another element $|A'\rangle \in S$, such that $|A\rangle + |A'\rangle \neq |0\rangle$ ()
- (d) If $|A\rangle \in S$, $|A\rangle + |0\rangle = |A\rangle$, where $|0\rangle$ is a null element ()

10. $|A\rangle$ is said to be normalized, if

- (a) $|\langle A | A \rangle|^{1/2} = 1$ ()
- (b) $|\langle A | A \rangle|^{1/2} = 0$ ()
- (c) $\langle A | A \rangle = 1$ ()
- (d) $\langle A | A \rangle = 0$ ()

(SECTION : B-SHORT ANSWERS)

(Marks: 15)

Answer the following :

3×5=15

UNIT-I

1. Show that the maximum change in the wavelength of incident X-ray photon occurs when photon gets scattered in the direction of incidence.

OR

2. Show that the group velocity v_q is equal to the particle velocity v.

UNIT-II

3. If $\psi_1(x, t)$ and $\psi_2(x, t)$ are two solutions of Schrödinger wave equation for a given potential V(x, t), then show that $\psi = a_1\psi_1 + a_2\psi_2$ is also a solution of the Schrödinger wave equation.

OR

4. For the wave function $\psi(x) = \sqrt{a} e^{-ax}$, calculate the probability of finding the particle within x = 1/a and x = 2/a.

UNIT-III

5. For the step potential

$$V(x) = \begin{cases} 0, & \text{for } x < 0 \\ V_0, & \text{for } x > 0 \end{cases}$$

show that wave function vanishes in the region x > 0 if $V_0 \rightarrow \infty$.

OR

 Calculate the transmission probability if electrons of energy 2 eV are incident on a barrier of 3 eV height and 0.4 nm width.

Contd.

7. The ground-state of a harmonic oscillator is given by $\psi(x) = Ae^{-\alpha^2 x^2}$, where $\alpha^2 = \frac{k}{2\hbar\omega}$ and k is the force constant. Show that the mean potential energy $\langle V \rangle = \frac{1}{4}\hbar\omega$.

OR

8. Calculate the radial probability function for the ground-state of hydrogen atom.

Unit—V

9. Write down the addition and multiplication conditions to be satisfied by a vector space.

OR

10. Describe the Gram-Schmidt orthogonalization process.

(SECTION : C-DESCRIPTIVE)

(Marks : 50)

Answer the following :

Unit—I

- (a) Explain photoelectric effect. Derive the Einstein's photoelectric equation. Explain the characteristics of photoelectric phenomena based on Einstein's equation.
 - (b) Explain why Compton effect is not observed with visible light.

OR

- 2. (a) Describe Davisson and Germer's experiment and interpret its results.
 - (b) On the basis of uncertainty principle, explain why the wave and particle aspect of a physical entity are not observed simultaneously. ³

-

[Contd.

3

7

10×5=50

UNIT-II

- 3. (a) Derive the one-dimensional Schrödinger's time-dependent wave equation for a particle of mass m moving under the action of a conservative force field derivable from V(x), hence deduce Schrödinger's time-independent wave equation.
 - (b) Discuss the physical interpretation of the wave function ψ. Explain Born's interpretation of the wave function.

OR

- 4. (a) A particle travelling with energy E is incident on a potential barrier of height V_0 and width a. Show that there is a finite probability of transmission even if $E < V_0$.
 - (b) Define probability current density. Derive the equation of continuity for probability current density.

UNIT-III

- 5. (a) What are Hermitian operators? Show that \hat{p}_x is Hermitian. 1+2=3
 - (b) The ground-state wave function for the hydrogen atom is

$$\Psi = \frac{1}{\sqrt{\pi a_0^3}} e^{-r/a_0}$$

Show that the average distance of the electron from the nucleus is $1 \cdot 5 a_0$.

(c) Show that
$$\langle p^2 \rangle = \left(\frac{\pi\hbar}{L}\right)^2$$
 for the wave function
 $\psi(x) = \begin{cases} \sqrt{\frac{2}{L}\sin\frac{\pi x}{L}}, & 0 < x < L\\ 0, & |x| > L \end{cases}$

OR

- 6. (a) Derive the expressions for normalized wave function and total linear momentum for a free particle of mass m moving in a rectangular potential box with sides a, b and c parallel to x, y and z axes respectively.
 - (b) Show that $[x^n, \hat{p}_x] = i\hbar n x^{n-1}$, where n is a positive integer.

з

4

6

4

4

3

Contd.

- 7. (a) Derive the commutation relation for the components of angular momentum L_x , L_y , L_z and show that all the three components commute with $L^2 = L_x^2 + L_y^2 + L_z^2$ 4+4=8
 - (b) Find the eigenvalues of Pauli spin matrix $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

OR

- 8. (a) Describe Stern-Gerlach experiment with a suitable schematic diagram. Discuss how the experiment demonstrated the existence of two spin states of the electron. 4+2=6
 - (b) Show that the magnetic dipole moment of an electron due to its 3+1=4orbital motion is quantized. Hence define Bohr magneton.

UNIT-V

- 9. (a) Apply Gram-Schmidt process to derive orthogonal basis vectors (v_1, v_2, v_3) from the basis vectors $u_1 = (1, 1, 1), u_2 = (-1, 1, 0)$ and 4 $u_3 = (1, 2, 1).$
 - (b) For the states $|\psi\rangle = 3i|v_1\rangle 7i|v_2\rangle$ and $|\phi\rangle = -|v_1\rangle + 2i|v_2\rangle$ where $|v_1\rangle$ and $|v_2\rangle$ are orthonormal bases.
 - (i) Evaluate $|\psi + \phi\rangle$ and $\langle \psi + \phi |$. 2+2=4
 - (ii) Show that $\langle \psi | \phi \rangle = \langle \phi | \psi \rangle^*$.

OR

- 10. (a) Write down the procedure to construct orthonormal basis set from non-orthonormal vectors $(v_1, v_2, v_3, \dots, v_n)$.
 - (b) Construct orthonormal basis set from the given vectors $u_1 = (1, 2, 3)$, $u_2 = (3, -1, 1)$ and $u_3 = (1, 1, -2)$. 6

* * *

/556

24G - 160

2

4

1

2 1