PHY/V/CC/11

Student's Copy

2024

(CBCS)

(5th Semester)

PHYSICS

SEVENTH PAPER

(Classical Mechanics and Nuclear Physics-II)

Full Marks: 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks : 10)

Put a Tick (1) mark against the correct answer in the brackets provided : 1×10=10

- 1. Hamiltonian equations of motion are given by
 - $(a) \quad \dot{q} = -\frac{\partial H}{\partial p}, \quad \dot{p} = \frac{\partial H}{\partial q} \qquad ()$ $(b) \quad \dot{q} = -\frac{\partial H}{\partial q}, \quad \dot{p} = \frac{\partial H}{\partial p} \qquad ()$ $(c) \quad \dot{q} = \frac{\partial H}{\partial q}, \quad \dot{p} = \frac{\partial H}{\partial q} \qquad ()$ $(d) \quad \dot{q} = \frac{\partial H}{\partial p}, \quad \dot{p} = -\frac{\partial H}{\partial q} \qquad ()$

/164

1

| Contd.

- 2. If there are no external forces acting on a system of particles, then
 - (a) the total momentum of the system is constant ()
 - (b) the velocity of centre of mass is constant ()
 - (c) momentum and velocity of the system are constant ()
 - (d) momentum and velocity of the system vary ()
- If the nuclear radius of a nucleus with mass number 125 is 1.5 Fermi, then radius of Cu⁶⁴ is (in Fermi)
 - (a) 0·48 ()
 - (b) 0·96 ()
 - (c) 2·4 ()
 - (d) 1·2 ()

4. The electron emitted in the radioactive decay process originates from

- (a) inner orbits of the atom ()
- (b) free electrons existing inside the nucleus ()
- (c) photons escaping from the nucleus ()
- (d) decay of a neutron to a proton inside the nucleus ()
- 5. Complete the nuclear reaction :

$$_{17}\text{Cl}^{35} + ... \rightarrow _{16}\text{S}^{32} + _{2}\text{He}^{4}$$

- (a) $_{1}H^{1}$ ()
- (b) $_0n^1$ ()
- (c) $_{1}H^{2}$ ()
- $(d)_{0}e^{1}$ ()

/164

2

I

- 6. The number of neutrons produced in a nuclear chain reaction is in
 - (a) algebraic progression ()
 - (b) arithmetic progression ()
 - (c) geometric progression ()
 - (d) harmonic progression ()
- 7. In a linear accelerator, charged particle is accelerated
 - (a) by oscillating electric field ()
 - (b) by oscillating magnetic field ()
 - (c) by charged motion of electrons ()
 - (d) due to flux in magnetic field ()
- 8. Frequency-modulated cyclotron is also called
 - (a) synchro-cyclotron ()
 - (b) synchrotron ()
 - (c) linear cyclotron ()
 - (d) accelerator ()
- The Zenith angle distribution of cosmic ray in the East-West plane to the magnetic equator is
 - (a) symmetrical ()
 - (b) linear ()
 - (c) non-linear ()
 - (d) asymmetrical ()

Which of the following particles is a meson? 10.

(a) Proton (

(b) Neutron (

(c) Electron (

(d) Pion ()

(SECTION : B-SHORT ANSWERS

(Marks : 15)

Answer the following questions :

UNIT-I

the and maximum compression when they arc moving along the same direction Two bodies of masses 3 kg and 6 kg arc connected by a spring, Find respectively. 2 m/s m/s and S velocities (Given : k = 100 N / m). have they ÷

0K

2. What are constraints and constrained motion? Give examples.

UNIT-II

3. What are isotopes and isobars? Give an example of each to support your answer.

0 B Calculate the binding energy of a deuteron in Joule ; Given : Mass of proton = 1.007276 a.m.u. 4

Mass of deuteron nucleus = 2.013553 a.m.u. Mass of neutron = 1.008665 a.m.u. 1 a.m.u. = 931 MeV

/164

[Contd.

3×5=15

A A A A A A A A A A A A A A A A A A A

UNITII	Write a brief note on electric quadrupole moment. Define packing fraction. What is its significance? Explain how the B-E curve explains nuclear fission and nuclear fusion.	OR What do you mean by semi-empirical mass formula? Using the formula, calculate the most stable isobar for a nucleus having odd mass number A. State and explain Geiger-Nuttall law.	UNIT—III Write a short note on liquid drop model. What are natural and artificial transmutation? Give one nuclear reaction for each. Find the Q-value of a nuclear reaction in terms of rest mass. 2	What is Fermi's four-factor formula of a nuclear reactor of infinite size? Explain all the factors involved in the formula. 2+4=6 Explain nuclear fusion as the source of stellar energy. 4	cribe the construction and working of a cyclotron. Discuss its tations. How does it overcome? 6+2+2=10 OR What are counters? Discuss the construction and working of Geiger-Müller counter.	What do you mean by the counter efficiency and dead time of a GM counter? G
	ව ව ව ව ව ව ව	4 Q Q	ල ව ව ව	(a) (a)	. De Iim	(e) x
		•	.,	U	6	/16

ŝ			>	•	
1			I		
			I		
		i		1	
	ì	2	2	ŝ	
1	•			١	i

Э C 3+2=5 What do you mean by baryon number (B), hypercharge (Y) and strangeness (S) of elementary particles? Estimate their relations. What are different conservation laws of elementary particles? What are anti-particles? (a) (q) (c) 6

OR

Discuss Bhabha's theory of electron showers. (a) 10.

5 4

Explain the conservation of lepton number. (q)

-

G25-160

,	-
1	-
-	20
	Z
	AHA

Student's Copy

2024

(CBCS)

(5th Semester)

PHYSICS

SEVENTH PAPER

(Classical Mechanics and Nuclear Physics-II

Full Marks : 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

 $1 \times 10 = 10$ Put a Tick (\checkmark) mark against the correct answer in the brackets provided :

1. Hamiltonian equations of motion are given by

(a)
$$\dot{q} = -\frac{\partial H}{\partial p}$$
, $\dot{p} = \frac{\partial H}{\partial q}$ ()
(b) $\dot{q} = -\frac{\partial H}{\partial q}$, $\dot{p} = \frac{\partial H}{\partial p}$ ()
(c) $\dot{q} = \frac{\partial H}{\partial q}$, $\dot{p} = \frac{\partial H}{\partial q}$ ()

1 n l

99 9p , p

Contd.

/164

 (b) the velocity of centre of mass is constant () (c) momentum and velocity of the system are constant () (d) momentum and velocity of the system vary (.) (d) momentum and velocity of the system vary (.) 3. If the nuclear radius of a nucleus with mass number 125 is 1.5 Fermi, th radius of Cu⁶⁴ is (in Fermi) (a) 0.48 () (b) 0.96 () (c) 2.4 () (d) 1.2 () (e) 2.4 () (d) 1.2 () (e) 2.4 () (f) 1.2 () (g) 1.2 () (g) 2.4 () (g) 1.2 () (h) redective decay process originates from (a) inner orbits of the atom () (h) free electrons existing finside the nucleus () (e) photons escaping from the nucleus () (f) decay of a neutron to a proton inside the nucleus () (g) 1.1¹ () ((a)	the tote	aln	noment	m of the s	ystem is	consta	unt	-	-	
 (c) momentum and velocity of the system arc constant () (d) momentum and velocity of the system vary (.) (d) momentum and velocity of the system vary (.) 3. If the nuclear radius of a nucleus with mass number 125 is 1.5 Fermi, th radius of Cu⁶⁴ is (in Fermi) (a) 0.48 () (b) 0.96 () (c) 2.4 () (d) 1.2 () (d) 1.2 () (d) 1.2 () (e) 2.4 () (f) 1.2 () (g) inner orbits of the atom () (h) free electron existing inside the nucleus () (c) photons escaping from the nucleus () (d) ecay of a neutron to a proton inside the nucleus () (d) 1.7Cl³⁵ + → 16S³² + 2He⁴ (e) 1H¹ () (f) 1H¹ () (g) 1H² () 	(q)	the velc	ocit	r of cei	rc of mass	is const	tant	-	-		
(d) momentum and velocity of the system vary () 3. If the nuclear radius of a nucleus with mass number 125 is 1.5 Fermi, th radius of Cu^{64} is (in Fermi) (a) 0.48 () (b) 0.96 () (c) 2.4 () (d) 1.2 () (d) 1.2 () (e) inner orbits of the atom () (f) inner orbits of the atom () (f) photons escaping from the nucleus () (f) photons escaping from the nucleus () (g) photons escaping from the nucleus () (g) photons escaping from the nucleus () (g) $decay of a neutron to a proton inside the nucleus () (g) decay of a neutron to a proton inside the nucleus () (g) decay of a neutron to a proton inside the nucleus () (g) decay of a neutron to a proton inside the nucleus () (g) decay of a neutron to a proton inside the nucleus () (g) de^{1} ()(g) de^{1} ()($	(c)	momen	tun	v and v	locity of th	e system	are co	unstau	rt	-	-
3. If the nuclear radius of a nucleus with mass number 125 is 1.5 Fermi, th radius of Cu^{64} is (in Fermi) (a) 0.48 () (b) 0.96 () (c) 2.4 () (d) 1.2 () (d) 1.2 () (d) 1.2 () (e) inner orbits of the atom () (f) inner orbits of the atom () (g) inner orbits of the atom () (h) free electrons existing inside the nucleus () (f) decay of a neutron to a proton inside the nucleus () (g) u^{11} () (g) u^{21} () (g) $0e^{1}$ () (g) $0e^{1}$ () (g) $0e^{1}$ ()	(q)	moment	tun	v and v	locity of the	e system	vary	0	•		
(a) 0-48 () (b) 0-96 () (c) 2-4 () (d) 1-2 () (d) 1-2 () (d) 1-2 () (d) incer orbits of the atom () (e) free electrons existing inside the nucleus () (f) free electrons existing inside the nucleus () (g) free electrons escaping from the nucleus () (g) photons escaping from the nucleus () (g) decay of a neutron to a proton inside the nucleus () (g) d^2 decay of a neutron to a proton inside the nucleus () (g) d^2 decay of a neutron to a proton inside the nucleus () (g) d^2 decay of a neutron to a proton inside the nucleus () (g) d^2	3. If ti rad	he nuclea lius of Cu	и ге 164	dius of is (in]	n nucleus wi ermi)	ith mass	numbe	r 125	is 1.5	Ferm	i, th
(b) 0.96 () (c) 2.4 () (d) 1.2 () (d) 1.2 () (d) 1.2 () (e) 2.4 () (f) 1.2 () (f) 1.2 () (f) inner orbits of the radioactive decay process originates from (a) inner orbits of the atom () (b) free electrons existing inside the nucleus () (c) photons escaping from the nucleus () (d) decay of a neutron to a proton inside the nucleus () (d) decay of a neutron to a proton inside the nucleus () (d) decay of a neutron to a proton inside the nucleus () (d) $decay of a neutron to a proton inside the nucleus () (d) decay of a neutron to a proton inside the nucleus () (d) decay of a neutron to a proton inside the nucleus () (d) decay of a neutron to a proton inside the nucleus () (d) decay of a neutron to a proton inside the nucleus () (d) decay of a neutron to a proton inside the nucleus () (d) decay of a neutron to a proton inside the nucleus () (e) 1H^1 ()(f) 1H^1 ()(g) 1H^1 ()(g) 0e^1 ()(g) 0e^1 ()(g) 0e^1 ()$	(a)	0-48	<u> </u>	-	<u>1</u> -						
(c) 2.4 () (d) 1.2 () (d) 1.2 () 4. The electron emitted in the radioactive decay process originates from (a) inner orbits of the atom () (b) free electrons existing inside the nucleus () (c) photons escaping from the nucleus () (d) decay of a neutron to a proton inside the nucleus () (d) decay of a neutron to a proton inside the nucleus () (f) $decay of a neutron to a proton inside the nucleus () (g) decay of a neutron to a proton inside the nucleus () (g) decay of a neutron to a proton inside the nucleus () (g) decay of a neutron to a proton inside the nucleus () (g) decay of a neutron to a proton inside the nucleus () (g) decay of a neutron to a proton inside the nucleus () (g) decay of a neutron to a proton inside the nucleus () (g) decay of a neutron to a proton inside the nucleus () (g) decay of a neutron to a proton inside the nucleus () (g) decay of a neutron to a proton inside the nucleus () (g) de^{1} ()(g) de^{1} ()(g) de^{1} ()(g) de^{1} ()(g) de^{1} ()$	(q)	96.0	YE	-							
 (d) 1.2 () 4. The electron emitted in the radioactive decay process originates from (a) inner orbits of the atom () (b) free electrons existing inside the nucleus () (c) photons escaping from the nucleus () (d) decay of a neutron to a proton inside the nucleus () (d) decay of a neutron to a proton inside the nucleus () 5. Complete the nuclear reaction : 17Cl³⁵ + → 16S³² + 2He⁴ (d) 1^{H¹} (e) 1^{H²} (f) 0^{n¹} (g) 1^{H²} (g) 1^{H²} (g) 1^{H²} (g) 0^{n¹} (h) 0^{e¹} 164 2 () 	(c)	2.4	-	-							
4. The electron emitted in the radioactive decay process originates from(a) inner orbits of the atom()(b) free electrons existing inside the nucleus()(c) photons escaping from the nucleus()(d) decay of a neutron to a proton inside the nucleus()(a) 1^{H^1} ()(a) 1^{H^1} ()(a) 1^{H^1} ()(a) 1^{H^1} ()(b) 0^{n^1} ()(c) 1^{H^2} ()(d) 0^{e^1} ()(e) 1^{H^2} ()(f) 0^{e^1} ()(g) 0^{e^1} ()(g) 0^{e^1} ()(h) 0^{e^1} <td< td=""><td>(q)</td><td>1.2</td><td>_</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	(q)	1.2	_	-							
(c) photons escaping from the nucleus () (d) decay of a neutron to a proton inside the nucleus () 5. Complete the nuclear reaction : $_{17}Cl^{35} + \dots \rightarrow _{16}S^{32} + _{2}He^{4}$ (a) $_{1}H^{1}$ () (b) $_{0}n^{1}$ () (c) $_{1}H^{2}$ () (d) $_{0}e^{1}$ () (d) $_{0}e^{1}$ () 164 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(q)	free elect	tror	s exist	inside the	e nucleux					
(c) photons escaping from the nucleus () (d) decay of a neutron to a proton inside the nucleus () 5. Complete the nuclear reaction : $_{17}Cl^{35} + \rightarrow _{16}S^{32} + _{2}He^{4}$ (a) $_{1}H^{1}$ () (b) $_{0}n^{1}$ () (c) $_{1}H^{2}$ () (d) $_{0}e^{1}$ () (d) $_{0}e^{1}$ () 2. a_{1} () (d) $_{0}e^{1}$ () 2. a_{2} () 3. a_{2} ()	(q)	free elect	tror	is exist	ig inside the	e nucleu:		Ĵ			
(d) decay of a neutron to a proton inside the nucleus () 5. Complete the nuclear reaction : $_{17}Cl^{35} + \dots \rightarrow _{16}S^{32} + _{2}He^{4}$ (a) $_{1}H^{1}$ () (b) $_{0}n^{1}$ () (c) $_{1}H^{2}$ () (c) $_{1}H^{2}$ () (d) $_{0}e^{1}$ () (d) $_{0}e^{1}$ () 2 164 2 164 2 167 10 167 10 177 10	(c)	photons	esc	aping fi	im the nucl	leus	Ĵ				
5. Complete the nuclear reaction : $_{17}Cl^{35} + \rightarrow _{16}S^{32} + _{2}He^{4}$ (a) $_{1}H^{1}$ () (b) $_{0}n^{1}$ () (c) $_{1}H^{2}$ () (d) $_{0}e^{1}$ () (d) $_{0}e^{1}$ () 2 $_{1}Conte$	(q)	decay of	8	eutron	o a proton	inside th	e nucle	sna	~	-	
$1_{7}Cl^{35} + \rightarrow 1_{6}S^{32} + _{2}He^{4}$ $(a) H^{1} ())$ $(b) on^{1} () ()$ $(c) H^{2} ())$ $(d) oe^{1} ())$ $(d) oe^{1} ())$ $164 \qquad 2 \qquad 2$	5. Con	aplete the	nu	clear re	ction :						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		17Cl ³⁵ +	1	→ 16 ^{S³²}	+ 2He ⁴						
$ \begin{array}{cccc} (b) & 0n^{1} & (&) \\ (c) & 1H^{2} & (&) \\ (d) & 0e^{1} & (&) \\ \end{array} $	(a)	$_{1}H^{1}$	_	(
(c) $_{1}H^{2}$ () (d) $_{0}e^{1}$ () 164 2 2 $_{1}Cont^{2}$	(q)	$_{0}n^{1}$	_	-							
(d) ₀ e ¹ () 164 2 2 2 [Con ¹⁰	(c)	$_{1}H^{2}$	_	(
164 2 Conta	(9)	0e ¹	_	-							
	64				61					1	Contd

6. The number of neutrons produced in a nuclear chain reaction is in

- (a) algebraic progression ()
- (b) arithmetic progression (
- (c) geometric progression (
- (d) harmonic progression (
- 7. In a linear accelerator, charged particle is accelerated

1012

- (a) by oscillating electric field
- (b) by oscillating magnetic field
- (c) by charged motion of electrons
- (d) due to flux in magnetic field (
- Frequency-modulated cyclotron is also called ø.
- (a) synchro-cyclotron (
- (b) synchrotron (
- (c) linear cyclotron ()
- (d) accelerator (
- 9. The Zenith angle distribution of cosmic ray in the East-West plane to the magnetic equator is
- (a) symmetrical ()

Test leaved.

- (b) linear ()
- (c) non-linear (
- (d) asymmetrical (

3

10. Which of the following particles is a meson?

(a) Proton ()

(b) Neutron (

(c) Electron (

(d) Pion ()

(SECTION : B-SHORT ANSWERS

(Marks : 15)

Answer the following questions :

UNIT-I

3×5=15

and the when they arc moving along the same direction 3 kg and 6 kg arc connected by a spring, Find respectively. 2 m/s m/s and ŝ Two bodies of masses maximum compression velocities (Given : k = 100 N / m). have they ÷

g

What are constraints and constrained motion? Give examples. ci

UNIT-II

What are isotopes and isobars? Give an example of each to support your answer. **ю**

g

Calculate the binding energy of a deuteron in Joule : Mass of proton = 1.007276 a.m.u. Given 4

Mass of deuteron nucleus = 2.013553 a.m.u. Mass of neutron = 1.008665 a.m.u. 1 a.m.u. = 931 MeV

/164

Contd.

ł	1				
1		1	ŕ	i	
	ş	ć		•	
	i		1	5	
1	5	_	2	•	
			1		

Write three points of distinction between nuclear fission and nuclear fusion ທ່

g

6. Find the ground state spin quantum number of ${}_{6}C^{12}$ and ${}_{5}B^{11}$

UNIT-IV

7. Describe briefly the need of particle accelerator and name the location of accelerators in India.

B

8. Write the theory and working principle of proton-synchrotron.

UNIT-V

9. What are cosmic rays? Explain the altitude effect of cosmic rays.

g

10. What arc quarks? Explain the flavour and colour in quarks.

(SECTION : C-DESCRIPTIVE)

(Marks : 50)

 $10 \times 5 = 50$

Answer the following questions :

UNIT--I

- S Find the equation of motion of reduced mass for a two-body problem. 1. (a)
- ŝ What is uniqueness of centrc of mass? Prove that the total linear momentum of a system of particles about the centre of mass is zero. Q

ğ

- 5 Using Hamiltonian formulation, obtain the equations of motion for a simple pendulum. a) 6
 - If the Lagrangian of a system is given by $L = \frac{1}{2}m\dot{q}^2 \frac{\lambda}{2}q\dot{q}^2$, where λ is (q)

a constant, find the Hamiltonian for the system.

Contd.

Э

/164

5			1	
		I		
		J		
	ļ			
	i	5	7	
,	-	É	-	
			3	ŀ

Write a brief note on electric quadrupole moment. a) ë.

 \sim

4

- Define packing fraction. What is its significance? (q)
- nuclear fission and Explain how the B-E curve explains nuclear fusion. 0

0R

- 2+4=6 semi-empirical mass formula? Using the formula, calculate the most stable isobar for a nucleus having odd What do you mean by mass number A. 4. (a)
- State and explain Geiger-Nuttall law. (q)

4

4

UNIT--III

- Write a short note on liquid drop model. (a) ທ່
- 2+2=4one nuclear artificial transmutation? Give and are natural reaction for each. What (q)
- Find the Q-value of a nuclear reaction in terms of rest mass. 3

N

g

- 2+4=6 What is Fermi's four-factor formula of a nuclear reactor of infinite size? Explain all the factors involved in the formula. Ø . ف
- Explain nuclear fusion as the source of stellar energy. (q)

4

UNIT-IV

Discuss its cyclotron. g of working limitations. How does it overcome? and construction the Describe 5

6+2+2=10

g

- 2+6=8 б and working construction the Discuss Geiger-Müller counter. counters? What are (a) œ.
- 3 What do you mean by the counter efficiency and dead time of a GM counter? (q)

/164

9

Contd.

1	i	è	2		•
			I		
			I		
	1	ſ			•
	i	ì			•
	5	2	2	5	1
1	ŝ			5	1
				3	

9.

d 3+2=5	с р (2	t	- 0	n
a) What do you mean by baryon number (B), hypercharge (Y) and strangeness (S) of elementary particles? Estimate their relations. $3+$	b) What are different conservation laws of elementary particles?	(c) What are anti-particles?	OR	(a) Discuss Bhabha's theory of electron showers.	(b) Explain the conservation of lepton number.

5

.

G25-160

.

/164

-