MATH/V/CC/07

Student's Copy

2024 (CBCS) (5th Semester)

MATHEMATICS

SEVENTH PAPER

(Complex Analysis)

Full Marks : 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick \square the correct answer in the box provided :

1×10=10

1. If the principal argument, $\operatorname{Arg} z = 0$, then z lies on the

- (a) positive imaginary axis
- (b) positive real axis
- (c) negative imaginary axis
- (d) negative real axis

2. If w_k be n-th root of a non-zero complex number z, then the roots w_k can be given as

(a)
$$w_k = \frac{1}{r^{1/n}} \left[\cos\left(\frac{\theta + 2k\pi}{n}\right) + i\sin\left(\frac{\theta + 2k\pi}{n}\right) \right]$$

(b) $w_k = r^{1/n} \left[\cos(\theta + 2k\pi) + i\sin(\theta + 2k\pi) \right]$
(c) $w_k = r^{1/n} \left[\cos\left(\frac{\theta + 2k\pi}{n}\right) + i\sin\left(\frac{\theta + 2k\pi}{n}\right) \right]$
(d) $w_k = \left[\cos\left(\frac{\theta + 2k\pi}{n}\right) + i\sin\left(\frac{\theta + 2k\pi}{n}\right) \right]$

- If a function is differentiable at every point of the domain, then we say that a function is
 - (a) continuous in that domain
 - (b) analytic in that domain \Box
 - (c) harmonic in that domain \Box
 - (d) constant in that domain
- 4. Polar form of Cauchy-Riemann equation is

(a)
$$\frac{\partial u}{\partial r} = -\frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial u}{\partial \theta} = -r \frac{\partial v}{\partial r}$$

(b) $\frac{\partial u}{\partial r} = -\frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial u}{\partial \theta} = r \frac{\partial v}{\partial r}$
(c) $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial u}{\partial \theta} = -r \frac{\partial v}{\partial r}$
(d) $\frac{\partial u}{\partial r} = r \frac{\partial v}{\partial \theta}, \frac{\partial u}{\partial \theta} = -r \frac{\partial v}{\partial r}$

5. A power series $\sum a_n z^n$ is said to be absolutely convergent if

(a) the series $\sum |a_n z^n|$ converges

- (b) the series $\sum a_n z^n$ converges
- (c) the sequence of partial sum converges
- (d) None of the above

6. The radius of convergence of the power series $\sum \frac{n!}{n!} z^n$ is (a) e *(b)* 00 П (c) 1 (d) 0 П 7. If the function f(z) is an entire function, then the integral of f(z) over a curve C (a) depends along the path (b) is always 0 (c) depends only on the end points of C (d) None of the above **8.** If f(z) is analytic in a simply connected domain D, and z_0 is any point on D and C is any simple closed curve enclosing the point z_0 , then

$$\oint_C \frac{\int (z)dz}{z-z_0}$$

equals

- (a) $2\pi i f(z_0)$ (b) $\pi i f(z_0)$

 (c) $\{\pi i f(z_0)\}/2$ (d) 0
- **9.** If z = a is the singular point of f(z), and a is the limit point of zeroes of f(z), then a is
 - (a) removable singularity \Box
 - (b) pole
 - (c) non-isolated essential singularity
 - (d) isolated essential singularity
- 10. If f(z) is such that f(a) = 0, then the point a is called a/an
 - (a) singular point of the function f(z)
 - (b) non-isolated point of the function f(z)
 - (c) zero of the function f(z)
 - (d) isolated point of the function f(z)

(Marks: 15)

Answer the following :

- Unit—I
- 1. For any complex numbers z_1 and z_2 , prove that $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2$ if and only if $z_1\overline{z}_2$ is purely imaginary.
 - OR
- 2. Prove that for any complex number z, $|z^2| = z\overline{z}$ where \overline{z} is the conjugate of z.

Unit—II

3. Show that the function f(z) = xy + iy is everywhere continuous but not analytic.

OR

4. Show that $f(z) = |z|^2$ is not differentiable for any values of z.

Unit—III

5. Examine the convergence of the series Σz^n .

OR

6. Show that the series $\sum n |z^n| = 0$.

Unit-IV

7. Evaluate $\int_C (x^2 - iy^2) dz$, where C is a continuous curve from (0, 0) to (2, 4).

OR

8. Evaluate $\int_C z^2 dz$, where C is a circle |z| = 2 in the region from $0 \le \theta \le \frac{\pi}{3}$.

UNIT-V

4

9. State and prove Taylor's theorem.

/153

3×5≈15

/153

Examine the nature of the function

$$f(z) = \frac{1}{\sin z - \cos z}$$

at $z = \frac{\pi}{4}$.

(SECTION : C-DESCRIPTIVE)

(Marks : 50)

Answer the following :

UNIT-I

- 1. (a) If z_1, z_2 and z_3 are the vertices of an isosceles triangle, right angled at the vertex z_2 , then prove that $z_1^2 + 2z_2^2 + z_3^2 = 2z_2(z_1 + z_3)$. 5
 - (b) Find the four fourth roots of $(-2\sqrt{3} 2i)$.

OR

2. (a) Prove the triangular inequality of a complex number.

(b) Show that the equation of the form azz + βz + βz + βz + r = 0 where a and r are real constants and ββ - ar ≥ 0 represents a straight line if a = 0 and a circle if a ≠ 0.

UNIT-II

- (a) Prove that every differentiable function of complex numbers is continuous but not conversely.
 - (b) Show that the function

$$f(z) = \frac{x^3(1+i) - y^3(1-i)}{(x^2 + y^2)}, \ z \neq 0 \ \text{and} \ f(0) = 0$$

is continuous but not analytic at z=0 although C-R equations are satisfied at the point.

10×5=50

6

5

5

5

5

- **4.** (a) If f(z) = u + iv is an analytic function of z = x + iy and $u v = e^x (\cos y \sin y)$, find if (z) in terms of z.
 - (b) Show that $w = f(z) = u^2$ is harmonic if and only if u is constant.

UNIT-III

5. (a) Examine the behaviour of the power series

$$\Sigma \frac{z^n}{n}$$

on the circle of convergence.

(b) For what values of z, does the series

$$\Sigma \frac{1}{(z^2+1)^n}$$

convergent? Find its sum.

OR

6. (a) Test the convergence of the series

 $\Sigma \frac{(-1)^n}{z+n}$

and find the condition for the convergence of the series.

- (b) Find the radii of convergence of the following series :
 - (i) $\sum \frac{1}{n^n} z^n$ (ii) $\sum 2^{\sqrt{n}} z^n$

UNIT-IV

7. (a) Find the value of the integral $\int_0^{1+i} (x - y + ix^2) dx$ along

- (i) a straight line from z = 0 to z = 1 + i
- (ii) the real axis from z = 0 to z = 1 and then along a line parallel to the imaginary axis from z = 1 to z = 1 + i.

2

6

4

6

4

2+2=4

(b) Evaluate

$$\oint_C \frac{dz}{(z-1)(z-2)(z+4)}$$

where C:|z|=3.

OR

8. (a) Prove that if f(z) be analytic in a simply connected domain D, let z_0 be any point in D and C be any simple closed curve in D enclosing the point z_0 , then

$$\oint_C \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0)$$

(b) Evaluate

$$\oint_{3i}^{2+4i} \left[(2y + x^2) dx + (3x - y) dy \right]$$

along the path x = 2t, $y = t^2 + 3$.

UNIT-V

- 9. (a) State and prove Liouville's theorem.
 - (b) If a function is given by $f(z) = 1/(z^3 + z^5)$, then what are the singularities of f(z)? State the order of the poles. 4

OR

10. (a) Obtain the Taylor and Laurent series for the function

$$f(z) = \frac{z^2 - 1}{(z+3)(z+2)}$$

in the region (i) |z| < 2 (ii) 2 < |z| < 3 (iii) |z| > 3.

- (b) Examine the nature of singularities of the following functions : 2+2=4
 - (i) $\cot z$ at $z = \infty$ (ii) $\sec\frac{1}{z}$ at z=0

* * *

6

6

4

MATH/V/CC/07

Student's Copy

2024

(CBCS)

(5th Semester)

MATHEMATICS

SEVENTH PAPER

(Complex Analysis)

Full Marks: 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick ☑ the correct answer in the box provided :

 $1 \times 10 = 10$

1. If the principal argument, $\operatorname{Arg} z = 0$, then z lies on the

(a) positive imaginary axis

(b) positive real axis

(c) negative imaginary axis

(d) negative real axis

2. If w_k be *n*-th root of a non-zero complex number *z*, then the roots w_k can be given as

(a)
$$w_k = \frac{1}{r^{1/n}} \left[\cos\left(\frac{\theta + 2k\pi}{n}\right) + i\sin\left(\frac{\theta + 2k\pi}{n}\right) \right]$$

(b) $w_k = r^{1/n} \left[\cos\left(\theta + 2k\pi\right) + i\sin\left(\theta + 2k\pi\right) \right]$
(c) $w_k = r^{1/n} \left[\cos\left(\frac{\theta + 2k\pi}{n}\right) + i\sin\left(\frac{\theta + 2k\pi}{n}\right) \right]$
(d) $w_k = \left[\cos\left(\frac{\theta + 2k\pi}{n}\right) + i\sin\left(\frac{\theta + 2k\pi}{n}\right) \right]$

3. If a function is differentiable at every point of the domain, then we say that a function is

- (a) continuous in that domain
 (b) analytic in that domain
 (c) harmonic in that domain
- (d) constant in that domain \Box
- 4. Polar form of Cauchy-Riemann equation is

(a)
$$\frac{\partial u}{\partial r} = -\frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial u}{\partial \theta} = -r \frac{\partial v}{\partial r}$$

(b) $\frac{\partial u}{\partial r} = -\frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial u}{\partial \theta} = r \frac{\partial v}{\partial r}$
(c) $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial u}{\partial \theta} = -r \frac{\partial v}{\partial r}$
(d) $\frac{\partial u}{\partial r} = r \frac{\partial v}{\partial \theta}, \frac{\partial u}{\partial \theta} = -r \frac{\partial v}{\partial r}$

5. A power series $\sum a_n z^n$ is said to be absolutely convergent if

(a) the series Σ | a_nzⁿ | converges □
(b) the series Σa_nzⁿ converges □
(c) the sequence of partial sum converges □
(d) None of the above □

/153

2

[Contc

			61							
6.	The	radius	of conver	gence of the	power seri	$\sum \frac{1}{n}$	$\frac{1!}{n}z^n$ is	3		
	(a)	е				(b)	~		(14) (14)	
	(c)	1				(d)	0			
7.	If the function $f(z)$ is an entire function, then the integral of $f(z)$ over curve C									er a
	(a)	depend	ds along th	ne path						
	(b)	is alwa	ays O							
	(c) depends only on the end points of C									
	(đ)	None of the above \Box								
8.	If $f(z)$ is analytic in a simply connected domain D , and z_0 is any point on D and C is any simple closed curve enclosing the point z_0 , then									on D
$\oint_C \frac{f(z)dz}{z-z_0}$										
	equals									
	(a)	2πif (z	o) 🗆			(b)	$\pi i f(z_0$)		
	(c)	$\{\pi if(z_0)\}$)}/2			(d)	0			
9.	lf z the	If $z = a$ is the singular point of $f(z)$, and a is the limit point of zeroes of $f(z)$, then a is								
	(a)	remov	able singu	larity 🗆						
	(b)	pole								
	(c) non-isolated essential singularity									
	(d)	isolate	ed essentia	al singularity						
10	. If $f(z)$ is such that $f(a) = 0$, then the point a is called a/an									
	(a)	singu	lar point o	of the function	n <i>f</i> (<i>z</i>)					
	(b)	non-i	solated poi	int of the fun	ction f(z)	Ľ	נ			
	(c)	zero	of the func	tion $f(z)$						
	(d)	isolat	ed point o	f the functior	f(z)					

(SECTION : B-SHORT ANSWERS)

(Marks: 15)

Answer the following :

- Unit—I
- 1. For any complex numbers z_1 and z_2 , prove that $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2$ if and only if $z_1\overline{z}_2$ is purely imaginary.

OR

2. Prove that for any complex number z, $|z^2| = z\overline{z}$ where \overline{z} is the conjugate of z.

UNIT—II 3. Show that the function f(z) = xy + iy is everywhere continuous but not analytic.

OR

4. Show that $f(z) = |z|^2$ is not differentiable for any values of z.

UNIT-III

5. Examine the convergence of the series Σz^n .

OR

6. Show that the series $\sum n! z^n$ converges only at z = 0.

UNIT-IV

7. Evaluate $\int_C (x^2 - iy^2) dz$, where C is a continuous curve from (0, 0) to (2, 4).

OR

8. Evaluate $\int_C z^2 dz$, where C is a circle |z| = 2 in the region from $0 \le \theta \le \frac{\pi}{3}$.

UNIT-V

9. State and prove Taylor's theorem.

/153

| Cont

3×5

OR

Examine the nature of the function

$$f(z) = \frac{1}{\sin z - \cos z}$$

at $z = \frac{\pi}{4}$.

(SECTION : C-DESCRIPTIVE)

(Marks : 50)

nswer the following :

Unit—I

- 1. (a) If z_1 , z_2 and z_3 are the vertices of an isosceles triangle, right angled at the vertex z_2 , then prove that $z_1^2 + 2z_2^2 + z_3^2 = 2z_2(z_1 + z_3)$. 5
 - (b) Find the four fourth roots of $(-2\sqrt{3} 2i)$.

OR

(b) Show that the equation of the form $az\overline{z} + \overline{\beta}z + \beta\overline{z} + r = 0$ where a and r are real constants and $\beta\overline{\beta} - ar \ge 0$ represents a straight line if a = 0 and a circle if $a \ne 0$.

UNIT-II

- 3. (a) Prove that every differentiable function of complex numbers is continuous but not conversely.
 - (b) Show that the function

$$f(z) = \frac{x^3(1+i) - y^3(1-i)}{(x^2 + y^2)}, \ z \neq 0 \ \text{and} \ f(0) = 0$$

5

is continuous but not analytic at z=0 although C-R equations are satisfied at the point.

[Contd.

5

10×5=50

4

6

5

- **4.** (a) If f(z) = u + iv is an analytic function of z = x + iy and $u v = e^{x} (\cos y \sin y)$, find if (z) in terms of z.
 - (b) Show that $w = f(z) = u^2$ is harmonic if and only if u is constant.

Unit—III

5. (a) Examine the behaviour of the power series

$$\sum_{n=1}^{\infty} \frac{z^n}{n}$$

on the circle of convergence.

(b) For what values of z, does the series

$$\sum \frac{1}{(z^2+1)^n}$$

convergent? Find its sum.

OR

6. (a) Test the convergence of the series

$$\Sigma \frac{(-1)^n}{z+n}$$

and find the condition for the convergence of the series.

- (b) Find the radii of convergence of the following series :
 - (i) $\sum \frac{1}{n^n} z^n$ (ii) $\sum 2^{\sqrt{n}} z^n$

UNIT-IV

7. (a) Find the value of the integral $\int_0^{1+i} (x - y + ix^2) dx$ along

- (i) a straight line from z = 0 to z = 1 + i
- (ii) the real axis from z = 0 to z = 1 and then along a line parallel to the imaginary axis from z = 1 to z = 1 + i.

/153

5

6

4

б

4

6

2+2=+

(b) Evaluate

$$\oint_C \frac{dz}{(z-1)(z-2)(z+4)}$$

where C:|z|=3.

OR

8. (a) Prove that if f(z) be analytic in a simply connected domain D, let z_0 be any point in D and C be any simple closed curve in D enclosing the point z_0 , then

$$\oint_C \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0)$$

$$\oint_{3i}^{2+4i} \left[(2y + x^2) dx + (3x - y) dy \right]$$

along the path x = 2t, $y = t^2 + 3$.

UNIT-V

(b) If a function is given by $f(z) = 1/(z^3 + z^5)$, then what are the singularities of f(z)? State the order of the poles. 4

OR

10. (a) Obtain the Taylor and Laurent series for the function

$$f(z) = \frac{z^2 - 1}{(z+3)(z+2)}$$

in the region (i) |z| < 2 (ii) 2 < |z| < 3 (iii) |z| > 3.

- (b) Examine the nature of singularities of the following functions : 2+2=4
 - (i) $\cot z$ at $z = \infty$ (ii) $\sec \frac{1}{z}$ at z = 0

/153

6

6