MATH/IV/EC/04

Student's Copy

2024

(CBCS)

(4th Semester)

MATHEMATICS

FOURTH PAPER

(Vector Calculus and Solid Geometry)

Full Marks : 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick (\checkmark) the correct answer in the brackets provided : $1 \times 10=10$

1. The value of $[i \ k \ j]$ is

- (a) 1 ()
- (b) 2 ()
- (c) 0 ()
- (d) -1 ()

/541

2. If \vec{a} , \vec{b} , \vec{c} are any three vectors, then

$$\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b})$$

$$0 \qquad () \\
1 \qquad () \\
-1 \qquad () \\
\vec{b} \qquad () \\
\vec{f} = (2x + y)\hat{i} - (3y + 2z)\hat{i} + (x + az)\hat{k} \text{ is solen}$$

3. If $\vec{V} = (2x + y)\hat{i} - (3y + 2z)\hat{j} + (x + az)\hat{k}$ is solenoidal, then the value of the constant a is

 (a) 2x ()

 (b) 2z ()

 (c) 1
 ()

 (d) 0
 ()

is

(a) (b) (c)

(d)

4. If \$\phi(x, y, z) = x² + y² + z²\$, then the value of grad \$\phi\$ at the point (1, 2, 3) is
(a) 2\$\tilde{i}\$ + 4\$\tilde{j}\$ + 5\$\tilde{k}\$ ()
(b) \$\tilde{i}\$ + 4\$\tilde{j}\$ + 6\$\tilde{k}\$ ()

- (c) $2\hat{i} + 3\hat{j} + 6\hat{k}$ ()
- (d) $2\hat{i} + 4\hat{j} + 6\hat{k}$ ()
- 5. By changing the origin to (2, 3) without changing the direction of axes, the equation 5x + 3y = 3 changes to
- (a) 5x + 3y = 1() (b) 5x + 3y + 16 = 0() (c) 5x + 3y + 6 = 0() (d) None of the above () 6. The equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a circle, if (a) $ab - h^2 = 0$ ſ) (b) $ab - h^2 \neq 0$ () (c) a = b and h = 0() (d) a + b = 0 ()

/541

[Contd.

7. The shortest distance between the lines

$$\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$$
 and $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$

is

(a) $2\sqrt{29}$ () (b) $3\sqrt{29}$ () (c) $2\sqrt{30}$ () (d) $3\sqrt{30}$ ()

8. The angle between the planes x + y + z = 1 and x - y = 2 is

(a) 0 () (b) $\frac{\pi}{2}$ () (c) $\frac{\pi}{3}$ () (d) $\frac{\pi}{4}$ ()

9. If the sphere is $x^2 + y^2 + z^2 - 4x + 5y - 6z - 1 = 0$, then the radius is

- (a) $\frac{7}{2}$ () (b) $\frac{9}{2}$ ()
- (c) $\frac{7}{3}$ ()
- (d) 0 ()

10. The coordinates of the centre of the circle $x^2 + y^2 + z^2 = 30$, x + 2y + 3z = 14 is

(a)	(1, 2, 3)	()	<i>(b)</i> (0, 1, 2)	()
(c)	(2, 1, 3)	()	(d) (4, 3, 1)	()

/541

/541

(SECTION : B-SHORT ANSWERS)

(Marks: 15)

Answer the following :

UNIT-I

1. Show that $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$ if and only if $(\vec{c} \times \vec{a}) \times \vec{b} = 0$.

OR

2. Find a unit vector perpendicular to each of the vectors $\vec{a} = 4\hat{i} - \hat{j} + 3\hat{k}$ and $\vec{b} = -2\hat{i} + \hat{j} - 2\hat{k}.$

UNIT-II

3. If ϕ and \vec{A} have continuous second-order partial derivatives, then prove that $\operatorname{curlgrad} \phi = 0$.

OR

4. Find the unit normal to the surface $x^4 - 3xyz + z^2 + 1 = 0$ at the point (1, 1, 1).

UNIT-III

5. Find the transformed equation of the curve (x+2y+4)(2x-y+5) = 25, when the two perpendicular lines x + 2y + 4 = 0 and 2x - y + 5 = 0 are taken as coordinate axes.

OR

6. For what value of k, will the equation $3x^2 + kxy - 3y^2 + 29x - 3y + 18 = 0$ represent a pair of straight lines?

7. Show that the lines

$$\frac{x+2}{3} = \frac{1-y}{-1} = \frac{z+1}{-2}$$
 and $\frac{3-x}{-2} = \frac{y}{-2} = \frac{z+2}{1}$

are coplanar.

8. Find the equations of the planes bisecting the angles between the planes

$$x+2y+2z-3=0$$
 and $3x+4y+12z+1=0$

UNIT-V

9. Find the equation of the tangent plane to the sphere

$$x^2 + y^2 + z^2 - 2x + 3y - 4z + 6 = 0$$

at the point (5, 4, 4).

OR

10. Find the equation of the cone whose vertex is (0, 0, 3) and the base is $x^2 - y^2 = 7$.

(SECTION : C-DESCRIPTIVE)

(Marks : 50)

Answer the following questions :

UNIT-I

1. (a) In a triangle ABC on a plane, let $\overrightarrow{BC} = \overrightarrow{a}$, $\overrightarrow{CA} = \overrightarrow{b}$, $\overrightarrow{AB} = \overrightarrow{c}$. Prove that

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

where a, b, c are the lengths of the sides BC, CA, AB, respectively. 5

(b) Show that $[\vec{b} \times \vec{c} \ \vec{c} \times \vec{a} \ \vec{a} \times \vec{b}] = [\vec{a} \ \vec{b} \ \vec{c}]^2$. 5 OR

2. (a) If $\vec{r}(t) = (t+1)\hat{i} + 2t\hat{j} + t^2\hat{k}$, t = 1, find the tangential and normal components of acceleration of the given motion and hence write acceleration in the form $\vec{a} = a_T \vec{T} + a_N \vec{N}$ without finding \vec{T} and \vec{N} . 5

5

/541

| Contd.

(b) Prove that for a plane triangle ABC

$$\frac{\sin C}{c} = \frac{\sin B}{b} = \frac{\sin a}{a}$$

where $\overrightarrow{BC} = \overrightarrow{a}$, $\overrightarrow{CA} = \overrightarrow{b}$, $\overrightarrow{AB} = \overrightarrow{c}$.

UNIT-II

А

- 3. (a) Find an equation for the tangent plane to the surface $xz^2 + x^2y = z-1$ at the point (1, -3, 2).
 - (b) Let $\vec{B} = 2xz^2\hat{i} yz\hat{j} + 3xz^3\hat{k}$ and $\phi = x^2yz$. Find the value of $\nabla \times \vec{B}$ and curl $(\phi \vec{B})$ at the point (1, 1, 1).

OR

- 4. (a) If $\phi = 2xy^2z + x^2y$, evaluate $\int_C \phi \odot d\vec{r}$, where C is the curve x = t, $y = t^2$, $z = t^3$ from t = 0 to t = 1.
 - (b) Evaluate $\iint_S \vec{A} \cdot \vec{n} \, dS$, where $\vec{A} = (x + y^2)\hat{i} 2x\hat{j} + 2yz\hat{k}$ and S is the surface of the plane 2x + y + 2z = 6 in the first-octant.

UNIT-III

- 5. (a) Prove that the equation $2x^2 5xy + 3y^2 2x + 3y = 0$ represents a pair of straight lines.
 - (b) If by any change of axes, without change of origin, the quantity $ax^2 + 2hxy + by^2 + 2gx + 2fy + c$

transforms to

$$a'x'^{2} + 2h'x'y' + b'y'^{2} + 2g'x' + 2f'y' + c'$$

then show that-

(i) $ab - h^2 = a'b' - h'^2$ (ii) $f^2 + g^2 = f'^2 + g'^2$

/541

6

[Contd.

6

5

5

5

5

5

OR

(b) Find the equation of the diameter of the conic $4x^2 + 6xy - 5y^2 = 1$ conjugate to the diameter y - 2x = 0.

UNIT-IV

7. (a) Prove that the length of the perpendicular drawn from the point (x_1, y_1, z_1) to the plane ax + by + cz + d = 0 is

$$\frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}} - 5$$

(b) Find the equation of the plane passing through the points (4, 0, -2), (1, 1, -1) and origin.

OR

8. (a) Find the angle between the planes represented by

$$12x^2 - 2y^2 - 6z^2 - 2xy + 7yz + 6zx = 0$$

(b) Find the magnitude and the position of the line of shortest distance between the lines

2x + y - z = 0 = x - y + 2z and x + 2y - 3z - 4 = 0 = 2x - 3y + 4z - 5 5

UNIT-V

9. (a) Find the equation of the sphere that passes through the circle

$$x^{2} + y^{2} + z^{2} - 2x + 3y - 4z + 6 = 0, \ 3x - 4y + 5z - 15 = 0$$

and cuts the sphere

$$x^2 + y^2 + z^2 + 2x + 4y - 6z + 11 = 0$$

7

orthogonally.

/541

Contd.

5

5

(b) Find the equation of the cone, whose vertex is (α, β, γ) and the base is the parabola z = 0, $y^2 = 4ax$.

OR

- 10. (a) Find the equation of the cylinder whose generators are parallel to the line 2x = y = 3z and which passes through the circle y = 0, $x^2 + z^2 = 8$.
 - (b) Find the equation of the right circular cylinder of radius 2, whose axis is the straight line

$$\frac{x}{1} = \frac{y}{-2} = \frac{z}{2}$$
 5

MATH/IV/EC/04

Student's Copy

2024

(CBCS)

(4th Semester)

MATHEMATICS

FOURTH PAPER

(Vector Calculus and Solid Geometry)

Full Marks : 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick (\checkmark) the correct answer in the brackets provided :

1×10=10

1. The value of [i k j] is

- (a) 1 ()
- (b) 2 ()
- (c) 0 ()
- (d) -1 ()

/541

2. If \vec{a} , \vec{b} , \vec{c} are any three vectors, then $\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b})$ is (a) 0(b) 1 () (c) -1 () (c) $\overrightarrow{}$ $(d) \vec{b}$ (3. If $\vec{V} = (2x + y)\hat{i} - (3y + 2z)\hat{j} + (x + az)\hat{k}$ is solenoidal, then the value of the MATHEMATICS constant a is (a) 2x () () (VTIBARIA - STATE - STATE) () (b) 2z (c) 1 () (d) 0 () 4. If $\phi(x, y, z) = x^2 + y^2 + z^2$, then the value of grad ϕ at the point (1, 2, 3) is (a) $2\hat{i} + 4\hat{j} + 5\hat{k}$ () (b) $\hat{i} + 4\hat{j} + 6\hat{k}$ () (c) $2\hat{i} + 3\hat{j} + 6\hat{k}$ () 5. By changing the origin to (2, 3) without changing the direction of axes, the equation 5x + 3y = 3 changes to (a) 5x + 3y = 1 () (b) 5x + 3y + 16 = 0() (c) 5x + 3y + 6 = 0() (d) None of the above () 6. The equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a circle, if (a) $ab - h^2 = 0$ () (b) $ab - h^2 \neq 0$ () (c) a = b and h = 0 ()

 $(d) \ a + b = 0 \quad ()$

/541

| Contd.

7. The shortest distance between the lines

$$\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$$
 and $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$

is

(a) $2\sqrt{29}$ () (b) $3\sqrt{29}$ () (c) $2\sqrt{30}$ () (d) $3\sqrt{30}$ ()

8. The angle between the planes x + y + z = 1 and x - y = 2 is

(a) 0 () (b) $\frac{\pi}{2}$ () (c) $\frac{\pi}{3}$ () (d) $\frac{\pi}{4}$ ()

9. If the sphere is $x^2 + y^2 + z^2 - 4x + 5y - 6z - 1 = 0$, then the radius is

- (a) $\frac{7}{2}$ () (b) $\frac{9}{2}$ ()
- (c) $\frac{7}{3}$ () (d) 0 ()

10. The coordinates of the centre of the circle $x^2 + y^2 + z^2 = 30$, x + 2y + 3z = 14 is

(a)	(1, 2, 3)	()	<i>(b)</i> (0, 1, 2)	()
(c)	(2, 1, 3)	()	(d) (4, 3, 1)	()

(SECTION : B-SHORT ANSWERS)

(Marks: 15)

Answer the following :

Unit—I

1. Show that $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$ if and only if $(\vec{c} \times \vec{a}) \times \vec{b} = 0$.

OR

2. Find a unit vector perpendicular to each of the vectors $\vec{a} = 4\hat{i} - \hat{j} + 3\hat{k}$ and $\vec{b} = -2\hat{i} + \hat{j} - 2\hat{k}$.

Unit—II

3. If ϕ and \vec{A} have continuous second-order partial derivatives, then prove that curlgrad $\phi = 0$.

OR

4. Find the unit normal to the surface $x^4 - 3xyz + z^2 + 1 = 0$ at the point (1, 1, 1).

UNIT-III

5. Find the transformed equation of the curve (x+2y+4)(2x-y+5) = 25, when the two perpendicular lines x+2y+4 = 0 and 2x-y+5 = 0 are taken as coordinate axes.

OR

6. For what value of k, will the equation $3x^2 + kxy - 3y^2 + 29x - 3y + 18 = 0$ represent a pair of straight lines?

7. Show that the lines

$$\frac{x+2}{3} = \frac{1-y}{-1} = \frac{z+1}{-2}$$
 and $\frac{3-x}{-2} = \frac{y}{-2} = \frac{z+2}{1}$

are coplanar.

/541

Find the equations of the planes bisecting the angles between the planes

$$x + 2y + 2z - 3 = 0$$
 and $3x + 4y + 12z + 1 = 0$

UNIT-V

9. Find the equation of the tangent plane to the sphere

$$x^2 + y^2 + z^2 - 2x + 3y - 4z + 6 = 0$$

at the point (5, 4, 4).

OR

10. Find the equation of the cone whose vertex is (0, 0, 3) and the base is $x^2 - y^2 = 7$.

(SECTION : C-DESCRIPTIVE)

Answer the following questions :

UNIT-1

1. (a) In a triangle ABC on a plane, let $\overrightarrow{BC} = \overrightarrow{a}$, $\overrightarrow{CA} = \overrightarrow{b}$, $\overrightarrow{AB} = \overrightarrow{c}$. Prove that

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

where a, b, c are the lengths of the sides BC, CA, AB, respectively. 5

- (b) Show that $[\vec{b} \times \vec{c} \ \vec{c} \times \vec{a} \ \vec{a} \times \vec{b}] = [\vec{a} \ \vec{b} \ \vec{c}]^2$. 5
- 2. (a) If $\vec{r}(t) = (t+1)\hat{i} + 2t\hat{j} + t^2\hat{k}$, t = 1, find the tangential and normal components of acceleration of the given motion and hence write acceleration in the form $\vec{a} = a_T \vec{T} + a_N \vec{N}$ without finding \vec{T} and \vec{N} . 5

5

[Contd.

(b) Prove that for a plane triangle ABC

$$\frac{\sin C}{c} = \frac{\sin B}{b} = \frac{\sin A}{a}$$

where $\overrightarrow{BC} = \overrightarrow{a}$, $\overrightarrow{CA} = \overrightarrow{b}$, $\overrightarrow{AB} = \overrightarrow{c}$.

Unit—II

- 3. (a) Find an equation for the tangent plane to the surface $xz^2 + x^2y = z-1$ at the point (1, -3, 2).
 - (b) Let $\vec{B} = 2xz^2\hat{i} yz\hat{j} + 3xz^3\hat{k}$ and $\phi = x^2yz$. Find the value of $\nabla \times \vec{B}$ and curl $(\phi \vec{B})$ at the point (1, 1, 1).

OR

- 4. (a) If $\phi = 2xy^2z + x^2y$, evaluate $\int_C \phi \odot d\vec{r}$, where C is the curve x = t, $y = t^2$, $z = t^3$ from t = 0 to t = 1.
 - (b) Evaluate $\iint_S \vec{A} \cdot \vec{n} \, dS$, where $\vec{A} = (x + y^2)\hat{i} 2x\hat{j} + 2yz\hat{k}$ and S is the surface of the plane 2x + y + 2z = 6 in the first-octant.

Unit—III

- 5. (a) Prove that the equation $2x^2 5xy + 3y^2 2x + 3y = 0$ represents a pair of straight lines.
 - (b) If by any change of axes, without change of origin, the quantity

$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c$$

transforms to

$$a'x'^{2} + 2h'x'y' + b'y'^{2} + 2g'x' + 2f'y' + c'$$

then show that-

(i) $ab - h^2 = a'b' - h'^2$ (ii) $f^2 + g^2 = f'^2 + g'^2$

6

5

5

5

5

5

OR

6. (a) Reduce the equation
$$3x^2 + 2xy + 3y^2 - 16x + 20 = 0$$
 to standard form. 5

(b) Find the equation of the diameter of the conic $4x^2 + 6xy - 5y^2 = 1$ conjugate to the diameter y - 2x = 0.

UNIT-IV

7. (a) Prove that the length of the perpendicular drawn from the point (x_1, y_1, z_1) to the plane ax + by + cz + d = 0 is

$$\frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$
5

(b) Find the equation of the plane passing through the points (4, 0, -2), (1, 1, -1) and origin.

OR

8. (a) Find the angle between the planes represented by

$$12x^2 - 2y^2 - 6z^2 - 2xy + 7yz + 6zx = 0$$
 5

(b) Find the magnitude and the position of the line of shortest distance between the lines

$$2x + y - z = 0 = x - y + 2z$$
 and $x + 2y - 3z - 4 = 0 = 2x - 3y + 4z - 5$ 5

9. (a) Find the equation of the sphere that passes through the circle

$$x^{2} + y^{2} + z^{2} - 2x + 3y - 4z + 6 = 0, \ 3x - 4y + 5z - 15 = 0$$

and cuts the sphere

$$x^2 + y^2 + z^2 + 2x + 4y - 6z + 11 = 0$$

orthogonally.

/541

Contd.

5

5

(b) Find the equation of the cone, whose vertex is (α, β, γ) and the base is the parabola z = 0, $y^2 = 4ax$.

OR

- 10. (a) Find the equation of the cylinder whose generators are parallel to the line 2x = y = 3z and which passes through the circle y = 0, $x^2 + z^2 = 8$.
 - (b) Find the equation of the right circular cylinder of radius 2, whose axis is the straight line

$$\frac{x}{1} = \frac{y}{-2} = \frac{z}{2}$$
 5

* * *

5