BCA/2/CC/08

Student's Copy

Professional Course Examination, May 2024

(CBCS)

(2nd Semester)

BACHELOR OF COMPUTER APPLICATIONS

(Discrete Mathematics)

Full Marks : 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(PART : A-OBJECTIVE)

(Marks: 25)

SECTION-I

(Marks: 15)

A. Tick () the correct answer in the brackets provided :

1. Two sets A and B are said to be disjoint if

 $1 \times 10 = 10$

(a) $A \cap B = \phi$ () (b) $A \cap B \neq \phi$ () (c) $A \cup B = \phi$ () (d) $A \cup B \neq \phi$ () 2. In Boolean algebra, $x \cdot (x' + y)$ is equal to (a) x + y () (b) x - y () (c) $x \cdot y$ () (d) x ()

/617

1

[Contd.

- 3. A statement formula which is true regardless of the truth values of the statements is a/an
 - (a) tautology ()
 - (b) connective ()
 - (c) equivalence ()
 - (d) normal form ()
- 4. Which of the following is not a proposition?
 - (a) 9<6 ()
 - (b) 1+1=2 ()
 - (c) Paris is in France ()
 - (d) Where are you going? ()
- 5. The value of ${}^{12}P_4$ is
 - (a)
 11880
 ()

 (b)
 22880
 ()

 (c)
 18180
 ()

 (d)
 12402
 ()
- 6. How many permutations can be made out of the letters of the word TRIANGLE?
 - (a)
 40330
 ()

 (b)
 40320
 ()

 (c)
 40230
 ()

 (d)
 20430
 ()
- 7. The greatest common divisor of 23 and 642 is
 - (a) 23 () (b) 642 () (c) 1 ()
 - (d) 13 ()
- 8. The Euler's Phi for 35 is

 (a)
 45
 ()

 (b)
 24
 ()

 (c)
 33
 ()

 (d)
 23
 ()

9. The chromatic number of 5 vertices of a graph is

- (a) 5 ()
- (b) 4 ()
- (c) 3 ()
- (d) 2 ()
- 10. The spanning tree of connected graph with 12 vertices contains the edges of
 - (a) 11 ()
 - (b) 12 ()
 - (c) 9 ()
 - (d) 10 ()
- **B.** Indicate whether the following statements are *True (T)* or *False (F)* by putting a Tick (✓) mark in the brackets provided : 1×5=5
 - 1. If U is the universal set and $A \subset U$, then $A \cap A'$ is ϕ .

(T / F)

2. A statement is of the form 'p if and only if' is called conditional statement.

(T / F)

3. 6 persons can occupy 4 vacant seats in 640 ways.

(T / F)

4. GCD(a, b) = 1 when a and b are co-prime.

(T / F)

5. In a multigraph, loops and more than one edges are allowed.

(T / F)

/617

[Contd.

SECTION-II

(Marks: 10)

- C. Answer the following questions :
 - 1. (a) Let $A = \{1, 2, 3, 5, 6\}$, $B = \{3, 4, 6, 8\}$ be two subsets of the universal set $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$. Draw Venn diagrams to represent the following sets :

(1) A', (2) B', (3) $A \cup B$, (4) $A \cap B$, (5) $(A \cup B)'$, (6) $(A \cap B)'$

OR

- (b) Using Boolean algebra, verify using the truth table that x + xy = x for each x, y in {0,1}.
- 2. (a) Verify that the proposition $p \neg \lor (p \land q)$ is tautology.

OR

- (b) Show that the proposition $\neg (p \land q)$ and $\neg p \lor \neg q$ are logically equivalent.
- 3. (a) If ${}^{n}P_{4} = 2 \times {}^{5}P_{3}$, then find the value of n.

OR

- (b) If ${}^{n}C_{14} = {}^{n}C_{16}$, then find the value of ${}^{n}C_{28}$.
- 4. (a) If $a \mid bc$ and gcd(a, b) = 1, then prove that $a \mid c$.

OR

- (b) Find the GCD and LCM of 482 and 1687 using Euclidean algorithm.
- 5. (a) Define graph colouring and give an example of it.

OR

(b) Define Hamiltonian graph and give an example of it.

/617

[Contd.

 $2 \times 5 = 10$

(PART : B-DESCRIPTIVE)

(Marks: 50)

D. Answer the following questions :

(a) In a group of 850 persons, 600 can speak Hindi and 340 can speak Tamil. Find— (i) how many can speak both Hindi and Tamil; (ii) how many can speak Hindi only; (iii) how many can speak Tamil only. (b) Let A = {a, b, c, d, e}, B = {a, b, d, f, g}, C = {b, c, e, y, h} and D = (d e f c h) Find

- $D = \{d, e, f, g, h\}.$ Find— (i) $A \cup B$
- (ii) $A \cap (B \cup D)$
- (iii) B∩C
- (iv) $A \cap (C \cup D)$

OR

(c) Construct the switching table for the function f(xyz) = x + yz. 6

- (d) Using Boolean's law, prove that U' + V = U'V' + U'V + UV. 4
- 2. (a) Construct a truth table for the following statement formulas : 5
 - (i) $p \wedge \neg q$ and $\neg p \vee \neg q$
 - (ii) $\neg (p \lor q) \equiv \neg p \land \neg q$
 - (b) Verify that the proposition $(p \land q) \land \neg (p \lor q)$ is a contradiction. 5

OR

5

- (c) Show that $\neg (p \land q) \rightarrow (\neg p \lor (\neg p \land q)) \leftrightarrow (\neg p \land q).$ 5
- (d) Show that (i) $p \land q$ logically implies $p \leftrightarrow q$ and (ii) $p \leftrightarrow \neg q$ does not logically imply $p \rightarrow q$.

/617

4

3. (a) Find the 10th term in the expansion of

 $\left(2x^2+\frac{1}{x}\right)^{12}$

(b) Find the coefficient of x^7 in the expansion of

 $\left(x^2 + \frac{1}{x}\right)^{11}$

OR

(c) Find the term independent of x in the expansion of

 $\left(2x-\frac{1}{x}\right)^{10}$

(d) Find the 7th term in the expansion of

$$\left(\frac{4x}{5} + \frac{5}{2x}\right)^8$$

4. (a) Prove that for positive integers a and b $gcd(a, b) \times lcm(a, b) = ab$

(b) State and prove Euler's theorem.

OR

(c) Use Euclidean algorithm to obtain integers x and y satisfying the following :

gcd(56, 72) = 56x + 72y

(d) State and prove Euclid's lemma.

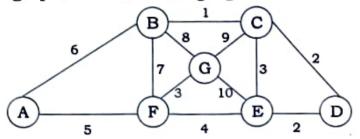
/617

[Contd.

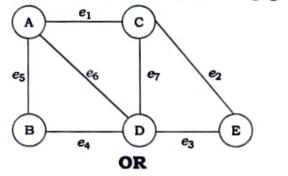
5

5

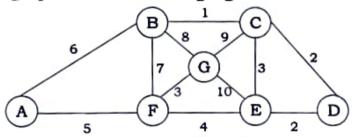
5

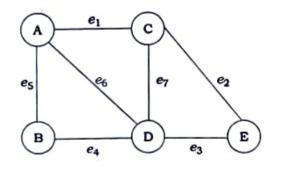

5

5


5

5


5. (a) Using Prim's algorithm, find the minimum spanning tree for the weighted graph of the following figure :


(b) Write the incidence matrix of the following graph :

(c) Using Kruskal's algorithm, find the minimum spanning tree for the weighted graph of the following figure :

(d) Write the adjacency matrix of the following graph :

* * *

7

24G-250

4

÷.

б

4

BCA/2/CC/08

Student's Copy

Professional Course Examination, May 2024

(CBCS)

(2nd Semester)

BACHELOR OF COMPUTER APPLICATIONS

(Discrete Mathematics)

Full Marks : 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(PART : A-OBJECTIVE)

(Marks: 25)

SECTION-I

(Marks: 15)

A. Tick (\checkmark) the correct answer in the brackets provided :

1×10=10

- 1. Two sets A and B are said to be disjoint if
 - $(a) \quad A \cap B = \phi \qquad ()$
 - (b) $A \cap B \neq \phi$ ()
 - (c) $A \cup B = \phi$ (
 - $(d) \quad A \cup B \neq \phi \qquad ($

2. In Boolean algebra, $x \cdot (x' + y)$ is equal to

)

(a) x + y () (b) x - y () (c) $x \cdot y$ () (d) x ()

/617

Contd.

3. A statement formula which is true regardless of the truth values of the

- statements is a/an
 - (a) tautology ()
 - (b) connective ()
 - (c) equivalence ()
 - (d) normal form ()

4. Which of the following is not a proposition?

(a) 9<6 ()

(b) 1+1=2 ()

- (c) Paris is in France ()
- (d) Where are you going? ()

5. The value of ${}^{12}P_4$ is

()
	(

- (b) 22880 ()
- (c) 18180 ()
- (d) 12402 ()

6. How many permutations can be made out of the letters of the word TRIANGLE?

(a)	40330	()
(b)	40320	()
(c)	40230	()
(d)	20430	()

- 7. The greatest common divisor of 23 and 642 is
 - (a) 23 ()
 - (b) 642 ()
 - (c) 1 ()
 - (d) 13 ()
- 8. The Euler's Phi for 35 is

(a) 45 () (b) 24 () (c) 33 () (d) 23 ()

/617

9. The chromatic number of 5 vertices of a graph is

)

- (a) 5 (
- (b) 4 ()
- (c) 3 ()
- (d) 2 ()
- 10. The spanning tree of connected graph with 12 vertices contains the edges of
 - (a) 11 · ()
 - (b) 12 ()
 - (c) 9 ()
 - (d) 10 ()
- B. Indicate whether the following statements are True (T) or False (F) by putting a Tick (✓) mark in the brackets provided : 1×5=5
 - 1. If U is the universal set and $A \subset U$, then $A \cap A'$ is ϕ .

(T / F)

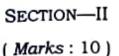
 A statement is of the form 'p if and only if' is called conditional statement.

(T / F)

3. 6 persons can occupy 4 vacant seats in 640 ways.

(T / F)

4. GCD(a, b) = 1 when a and b are co-prime.


(T / F)

5. In a multigraph, loops and more than one edges are allowed.

(T / F)

/617

[Contd.

- C. Answer the following questions :
 - (a) Let A = {1,2,3,5,6}, B = {3,4,6,8} be two subsets of the universal set U = {1,2,3,4,5,6,7,8}. Draw Venn diagrams to represent the following sets :

 (1) A', (2) B', (3) A∪B, (4) A∩B, (5) (A∪B)', (6) (A∩B)'

OR

- (b) Using Boolean algebra, verify using the truth table that x + xy = x for each x, y in {0,1}.
- 2. (a) Verify that the proposition $p \rightarrow (p \land q)$ is tautology.

OR

- (b) Show that the proposition $\neg (p \land q)$ and $\neg p \lor \neg q$ are logically equivalent.
- 3. (a) If ${}^{n}P_{4} = 2 \times {}^{5}P_{3}$, then find the value of n.

OR

- (b) If ${}^{n}C_{14} = {}^{n}C_{16}$, then find the value of ${}^{n}C_{28}$.
- 4. (a) If $a \mid bc$ and gcd(a, b) = 1, then prove that $a \mid c$.

OR

- (b) Find the GCD and LCM of 482 and 1687 using Euclidean algorithm.
- 5. (a) Define graph colouring and give an example of it.

OR

(b) Define Hamiltonian graph and give an example of it.

/617

[Contd.

2×5=10

(PART : B-DESCRIPTIVE)

(Marks: 50)

1. (a) In a group of 850 persons, 600 can speak Hindi and 340 can speak

D. Answer the following questions :

Tamil. Find—
(i) how many can speak both Hindi and Tamil;
(ii) how many can speak Hindi only;
(iii) how many can speak Tamil only.
(b) Let
$$A = \{a, b, c, d, e\}, B = \{a, b, d, f, g\}, C = \{b, c, e, y, h\}$$
 and
 $D = \{d, e, f, g, h\}.$ Find—
(i) $A \cup B$
(ii) $A \cap (B \cup D)$
(iii) $B \cap C$

(iv) $A \cap (C \cup D)$

OR

(c)	Construct the switching table for the function $f(xyz) = x + yz$.	6
(d)	Using Boolean's law, prove that $U' + V = U'V' + U'V + UV$.	4

2. (a) Construct a truth table for the following statement formulas : 5
 (i) p ∧ ¬q and ¬p ∨ ¬q
 (ii) ¬(p ∨ q) ≡ ¬p ∧ ¬q

(b) Verify that the proposition $(p \land q) \land \neg (p \lor q)$ is a contradiction. 5

OR

5

(c) Show that
$$\neg (p \land q) \rightarrow (\neg p \land (\neg p \land q)) \leftrightarrow (\neg p \land q)$$
. 5

(d) Show that (i) $p \land q$ logically implies $p \leftrightarrow q$ and (ii) $p \leftrightarrow \neg q$ does not logically imply $p \rightarrow q$.

/617

10×5=50

6

3. (a) Find the 10th term in the expansion of

 $\left(2x^2+\frac{1}{x}\right)^{12}$

(b) Find the coefficient of x^7 in the expansion of

$$\left(x^2+\frac{1}{x}\right)^{11}$$

OR

(c) Find the term independent of x in the expansion of

$$\left(2x-\frac{1}{x}\right)^{10}$$

(d) Find the 7th term in the expansion of

$$\left(\frac{4x}{5} + \frac{5}{2x}\right)^8$$

4. (a) Prove that for positive integers a and b $gcd(a, b) \times lcm(a, b) = ab$

(b) State and prove Euler's theorem.

OR

(c) Use Euclidean algorithm to obtain integers x and y satisfying the following :

$$3ca(36, 72) = 56x + 72y$$

(d) State and prove Euclid's lemma.

617

[Contd.

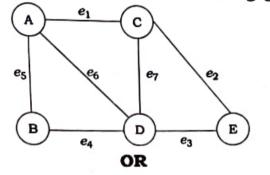
5

5

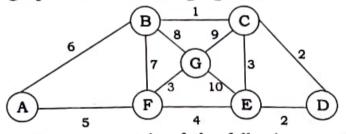
5

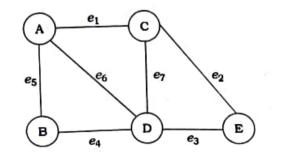

5

5


5

5


5. (a) Using Prim's algorithm, find the minimum spanning tree for the weighted graph of the following figure :


(b) Write the incidence matrix of the following graph :

(c) Using Kruskal's algorithm, find the minimum spanning tree for the weighted graph of the following figure :

(d) Write the adjacency matrix of the following graph :

* * *

7

24G-250

6

4

6

4

H

/617