MATH101 (MAJOR/MINOR)

Student's Copy

2023

(NEP-2020)

(1st Semester)

MATHEMATICS (MAJOR/MINOR)

(Calculus)

Full Marks : 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Put a Tick (1) mark against the correct answer in the brackets provided :

1×10=10

- 1. The value of $\lim_{x \to 0} (1 + 2x)^{\frac{x+3}{x}}$ is (a) 0 () (b) $e^{\log 2}$ () (c) e^3 () (d) e^6 ()
- **2.** The differential coefficient of e^{e^x} is
 - (a) $e^{e^x} \cdot e^x (\log x + 1)$ () (b) $e^{e^x} \cdot e^x$ () (c) $e^x_1(x+1)$ () (d) xe^{e^x} ()

/249

- **3.** The *n*th derivative of $y = \frac{1}{a x}$ is
- (a) $\frac{n!}{(a-x)^{n+1}}$ (b) $\frac{(-1)^n}{n!(a-x)^n}$ () (c) $\frac{n!}{(x-a)^n}$ () (d) $\frac{(-1)n!}{(a-x)^{n+1}}$ () 4. The value of c in Lagrange's mean value theorem for the function $f(x) = e^x$ (a) log(e - 1) () (b) $\log(e+1)$) (c) $\log(e-2)$ () $(d) \log(e+2) \qquad ($) 5. $f(x) = e^x$ can be expressed in power of (x + 3) by using (a) Maclaurin's theorem () (b) Leibnitz's theorem () (c) Taylor's theorem () (d) None of these () 6. The value of $\int_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx$ is (a) 0() (b) $\frac{\pi}{4}$ () (c) $\frac{\pi}{2}$ () (d) None of these () 7. The value of $\int_0^{\pi/2} \sin^4 x \cos^5 x \, dx$ is $(\alpha) \frac{8}{315}$ () (b) $-\frac{8}{315}$ () (c) $\frac{315}{8}$ () (d) $-\frac{315}{8}$ ()

/249

2

[Contd,

8. The value of $\int_0^{\pi/4} \tan^5 \theta \, d\theta$ is

(a)
$$\frac{1}{4}(\log 2 - 1)$$
 ()

(b)
$$\frac{1}{4}(2\log 2 - 1)$$
 ()

(c)
$$\frac{1}{4}\log 2$$
 ()

- (d) None of the above ()
- 9. If u(x, y) is a homogeneous function of degree n, then the value of ۵

$$x\frac{\partial^2 u}{\partial y\partial x} + y\frac{\partial^2 u}{\partial y^2}$$

is

(a)
$$n(n-1)u$$
 () (b) $(n-1)\frac{\partial u}{\partial y}$ ()

(c)
$$nu$$
 () (d) $(n-1)\frac{\partial u}{\partial x}$ ()

10. Every Cauchy sequence must be

- (a) monotonic (b) bounded above only) (()
- (c) bounded below only () (d) bounded ()

/249

Contd.

(SECTION : B-SHORT ANSWERS)

(Marks: 15)

Answer five questions, taking at least one from each Unit :

Unit—I

- If the area of a circle increases at a uniform rate, then show that the rate of increase of the perimeter varies inversely as the radius.
- **2.** Differentiate $x^{\sin^{-1}x}$ with respect to $\sin^{-1}x$.

UNIT-II

3. Let $f(x) = A + Bx + Cx^2$ in [a, b]. Show that the value of c in the mean value theorem

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
 is $\frac{a + b}{2}$

4. If $f(x) = (x - a)^m (x - b)^n$, where m and n are positive integers, then show that c in Rolle's theorem divides the segment $a \le x \le b$ in the ratio m : n.

UNIT-III

5. Show that

$$\int_0^1 \frac{\log(1+x)}{1+x^2} dx = \frac{\pi}{8} \log 2$$

6. Obtain the reduction formula for $\int_0^1 x^m e^x dx$

Contd.

3×5=15

UNIT-IV

7. If $u = \tan^{-1} \frac{x^2 + y^2}{x - y}$, then show that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \sin 2u$$

8. Test the convergency of the series

$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{\sqrt{n^2+1}} x^n, \ x > 0$$

(SECTION : C-DESCRIPTIVE)

Answer five questions, taking at least one from each Unit :

10×5=50

Unit—I

1. (a) Draw the graph of the function defined by

$$f(x) = \begin{cases} x^2 , & \text{when } x < 0 \\ x , & \text{when } 0 \le x \le 1 \\ \frac{1}{x} , & \text{when } x > 1 \end{cases}$$

Discuss whether f(x) is continuous at x = 1.

(b) Evaluate the following using L'Hospital rule :

$$\lim_{x \to 0} \frac{e^x + e^{-x} - 2\cos x}{x\sin x}$$

2. (a) Using ε - δ definition of continuity, prove that

$$f(x) = \begin{cases} x^2 \cos\left(\frac{1}{x}\right), & \text{when } x \neq 0\\ 0, & \text{when } x = 0 \end{cases}$$

is continuous at x = 0.

/249

[Contd.

4

6

(b) If $y = e^{a \sin^{-1} x}$, then show that

$$(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 + a^2)y_n = 0$$

Hence evaluate $(y_n)_0$.

- 3. (a) State and prove Rolle's theorem.
 - (b) Prove that

$$\sin ax = ax - \frac{a^3 x^3}{3!} + \frac{a^5 x^5}{5!} - \dots + \frac{a^{n-1} x^{n-1}}{(n-1)!} \sin\left(\frac{n-1}{2}\pi\right) + \frac{a^n x^n}{n!} \sin\left(a\theta x + \frac{n\pi}{2}\right)$$

where $0 < \theta < 1$.

- 4. (a) State and prove Taylor's theorem.
 - (b) Let f(x) be defined and continuous on [a h, a + h] and derivable on [a h, a + h]. Prove that there is a real number θ between 0 and 1 for which

$$f(a+h) - f(a-h) = h\{f'(a+\theta h) - f'(a-\theta h)\}$$

Unit—III

5. (a) If $I_n = \int_0^a (a^2 - x^2)^n dx$, n > 0, then prove that $(2n+1)I_n = 2na^2 I_{n-1}$. Hence evaluate

$$\int_0^a (a^2 - x^2)^3 dx$$

(b) Use the definition of definite integral as a limit of sum to evaluate

$$\int_{1}^{4} \frac{1}{x} dx$$

6. (a) If $I_n = \int_0^{\pi/2} x^n \sin x \, dx$, n be a positive integer greater than 1, then obtain the reduction formula for I_n and hence evaluate

$$\int_0^{\pi/2} x^5 \sin x \, dx \tag{6}$$

(b) If
$$I_n = \int_0^{\pi/4} \tan^n x \, dx$$
, then prove that $n(I_{n+1} + I_{n-1}) = 1$.

/249

[Contd.

4

5

5

5

7. (a) If

 $u = \sin^{-1} \left(\frac{x+y}{\sqrt{x}+\sqrt{y}} \right)$

then show that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{1}{2}\tan u$$

(b) Show that the sequence $\{S_n\}_{n=1}^{\infty}$, where

$$S_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}, \forall n \in \mathbb{N}$$

is convergent.

8. (a) If $u = \log \sqrt{x^2 + y^2 + z^2}$, then prove that

$$(x^{2} + y^{2} + z^{2})\left(\frac{\partial^{2}u}{\partial x^{2}} + \frac{\partial^{2}u}{\partial y^{2}} + \frac{\partial^{2}u}{\partial z^{2}}\right) = 1$$
5

(b) Examine the convergence for the series

$$\sum_{n=0}^{\infty} \left(\frac{n+1}{n+2}\right) x^n$$
 5

* * *

Č

MATH101 (MAJOR/MINOR)

Student's Copy

2023

(NEP-2020)

(1st Semester)

MATHEMATICS (MAJOR/MINOR)

(Calculus)

Full Marks : 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Put a Tick (1) mark against the correct answer in the brackets provided : 1×10=10

1. The value of $\lim_{x \to 0} (1+2x)^{\frac{x+3}{x}}$ is (a) 0 () (b) $e^{\log 2}$ () (c) e^3 () (d) e^6 ()

2. The differential coefficient of e^{e^x} is

(a)
$$e^{e^x} \cdot e^x (\log x + 1)$$
 () (b) $e^{e^x} \cdot e^x$ ()
(c) $e^x (x + 1)$ () (d) $x e^{e^x}$ ()

/249

[Contd.

3. The nth derivative of $y = \frac{1}{a - x}$ is

(a)
$$\frac{n!}{(a-x)^{n+1}}$$
 (b) $\frac{(-1)^n}{n!(a-x)^n}$ (c)

(c) $\frac{n!}{(x-a)^n}$ () (d) $\frac{(-1)n!}{(a-x)^{n+1}}$ ()

4. The value of c in Lagrange's mean value theorem for the function $f(x) = e^x$ in [0,1] is

(a) $\log(e-1)$ ()(b) $\log(e+1)$ ()(c) $\log(e-2)$ ()()(d) $\log(e+2)$ ()

5. $f(x) = e^x$ can be expressed in power of (x + 3) by using

- (a) Maclaurin's theorem () (b) Leibnitz's theorem () (c) Taylor's theorem () (d) None of these ()
- 6. The value of $\int_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx$ is
 - (a) 0 () (b) $\frac{\pi}{4}$ ()
 - (c) $\frac{\pi}{2}$ () (d) None of these ()
- 7. The value of $\int_0^{\pi/2} \sin^4 x \cos^5 x \, dx$ is
 - (a) $\frac{8}{315}$ (b) $-\frac{8}{315}$ (c) (c) $\frac{315}{8}$ (c) (d) $-\frac{315}{8}$ (c)

/249

2

[Contd.

8. The value of $\int_0^{\pi/4} \tan^5 \theta \, d\theta$ is

(a)
$$\frac{1}{4}(\log 2 - 1)$$
 ()

(b)
$$\frac{1}{4}(2\log 2 - 1)$$
 ()

(c)
$$\frac{1}{4}\log 2$$
 ()

- (d) None of the above ()
- 9. If u(x, y) is a homogeneous function of degree *n*, then the value of $x \frac{\partial^2 u}{\partial y \partial x} + y \frac{\partial^2 u}{\partial y^2}$

is

(a)
$$n(n-1)u$$
 (b) $(n-1)\frac{\partial u}{\partial y}$ (c)

(c)
$$nu$$
 () (d) $(n-1)\frac{\partial u}{\partial x}$ ()

- 10. Every Cauchy sequence must be
 - (a) monotonic
 (b) bounded above only
 (c) bounded below only
 (c) bounded below only
 (c) d) bounded
 (c) bounded below only

/249

(SECTION : B-SHORT ANSWERS)

(Marks: 15)

Answer five questions, taking at least one from each Unit :

Unit—I

- If the area of a circle increases at a uniform rate, then show that the rate of increase of the perimeter varies inversely as the radius.
- **2.** Differentiate $x^{\sin^{-1}x}$ with respect to $\sin^{-1}x$.

Unit—II

3. Let $f(x) = A + Bx + Cx^2$ in [a, b]. Show that the value of c in the mean value theorem

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
 is $\frac{a + b}{2}$

4. If $f(x) = (x - a)^m (x - b)^n$, where m and n are positive integers, then show that c in Rolle's theorem divides the segment $a \le x \le b$ in the ratio m : n.

Unit—III

5. Show that

$$\int_0^1 \frac{\log(1+x)}{1+x^2} \, dx = \frac{\pi}{8} \log 2$$

6. Obtain the reduction formula for $\int_{0}^{1} x^{m} e^{x} dx$

Contd.

3×5=15

UNIT-IV

7. If $u = \tan^{-1} \frac{x^2 + y^2}{x - y}$, then show that $x \frac{\partial u}{\partial x + y} = \frac{\partial u}{\partial x + y} \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x + y} \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x + y} \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x + y} \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x + y} \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x + y} \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x + y} \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x + y} \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x + y} \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x + y} \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x + y} \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x + y} \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x + y} \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x + y} \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x + y} \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x + y} \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x + y} \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x + y} \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x + y} \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x + y} \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x + y} \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x + y} \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} \frac{\partial u}{\partial y} \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} \frac{\partial u$

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \sin 2u$$

8. Test the convergency of the series

$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{\sqrt{n^2+1}} x^n, \ x > 0$$

(SECTION : C-DESCRIPTIVE)

Answer five questions, taking at least one from each Unit :

UNIT-I

$$f(x) = \begin{cases} x^2 & \text{, when } x < 0 \\ x & \text{, when } 0 \le x \le 1 \\ \frac{1}{x} & \text{, when } x > 1 \end{cases}$$

Discuss whether f(x) is continuous at x = 1.

(b) Evaluate the following using L'Hospital rule :

$$\lim_{x \to 0} \frac{e^x + e^{-x} - 2\cos x}{x\sin x}$$

2. (a) Using ε - δ definition of continuity, prove that

$$f(x) = \begin{cases} x^2 \cos\left(\frac{1}{x}\right), & \text{when } x \neq 0\\ 0, & \text{when } x = 0 \end{cases}$$

5

is continuous at x = 0.

/249

[Contd.

4

6

10×5=50

(b) If $y = e^{a \sin^{-1} x}$, then show that

$$(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 + a^2)y_n = 0$$

Hence evaluate $(y_n)_0$.

Unit—II

- 3. (a) State and prove Rolle's theorem.
 - (b) Prove that

$$\sin ax = ax - \frac{a^3 x^3}{3!} + \frac{a^5 x^5}{5!} - \dots + \frac{a^{n-1} x^{n-1}}{(n-1)!} \sin\left(\frac{n-1}{2}\pi\right) + \frac{a^n x^n}{n!} \sin\left(a\theta x + \frac{n\pi}{2}\right)$$

where $0 < \theta < 1$.

- 4. (a) State and prove Taylor's theorem.
 - (b) Let f(x) be defined and continuous on [a h, a + h] and derivable on |a - h, a + h[. Prove that there is a real number θ between 0 and 1 for which

$$f(a+h) - f(a-h) = h\{f'(a+\theta h) - f'(a-\theta h)\}$$

UNIT-III

5. (a) If $I_n = \int_0^a (a^2 - x^2)^n dx$, n > 0, then prove that $(2n + 1)I_n = 2na^2 I_{n-1}$. Hence evaluate

$$\int_0^a (a^2 - x^2)^3 dx$$

(b) Use the definition of definite integral as a limit of sum to evaluate $\int_{1}^{4} \frac{1}{x} dx$

6. (a) If $I_n = \int_0^{\pi/2} x^n \sin x \, dx$, n be a positive integer greater than 1, then obtain the reduction formula for I_n and hence evaluate

$$\int_0^{\pi/2} x^5 \sin x \, dx$$

(b) If $I_n = \int_0^{\pi/4} \tan^n x \, dx$, then prove that $n(I_{n+1} + I_{n-1}) = 1$.

[Contd.

/249

6

5

5

6

4

5

6

5

6

7. (a) If

$$u = \sin^{-1} \left(\frac{x+y}{\sqrt{x}+\sqrt{y}} \right)$$

then show that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{1}{2}\tan u$$

(b) Show that the sequence $\{S_n\}_{n=1}^{\infty}$, where

$$S_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}, \forall n \in \mathbb{N}$$

is convergent.

8. (a) If $u = \log \sqrt{x^2 + y^2 + z^2}$, then prove that

$$(x^{2} + y^{2} + z^{2})\left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} + \frac{\partial^{2} u}{\partial z^{2}}\right) = 1$$
5

(b) Examine the convergence for the series

$$\sum_{n=0}^{\infty} \left(\frac{n+1}{n+2}\right) x^n \tag{5}$$

* * *

7