	2023
	(NEP-2020)
	(1st Semester)
	CHEMISTRY (MAJOR)
	(Organic Chemistry—I)
	Full Marks: 75
	Time: 3 hours
	The figures in the margin indicate full marks for the questions
	(Snowey . A on morem)
	(SECTION : A—OBJECTIVE)
	(Marks : 10)
Tick	(✓) the correct answer in the brackets provided : 1×10=1
1.	The ease of abstraction of different classes of hydrogen in halogenation reaction is in the order
	(a) 1°-hydrogen > 2°-hydrogen > 3°-hydrogen ()
	(b) 3°-hydrogen > 1°-hydrogen > 2°-hydrogen ()
	(c) 2°-hydrogen > 3°-hydrogen > 1°-hydrogen ()
	(d) 3°-hydrogen > 2°-hydrogen > 1°-hydrogen ()
_	
2.	The formation of alkanes by action of carbonyl-group on amalgamated zinc
	in hydrochloric acid is called
	(a) Wurtz reaction ()
	(b) Kolbe reaction ()
	(c) Clemmensen reduction ()
	(d) Corey-House synthesis ()

3.	Which one of the following will give iodoform test?
	(a) CH ₃ CH ₂ CH ₂ OH ()
	(b) CH ₃ CH(OH)CH ₃ ()
	(c) $C_6H_5CH_2OH$ ()
	(d) (CH ₃) ₃ COH ()
4.	Alcohols on treatment with Grignard's reagent give
	(a) alkene ()
	(b) aldehyde ()
	(c) alkane ()
	(d) alkanoic acid ()
5.	Ethers when treated with strong acids form salts known as
	(a) hydronium salts ()
	(b) iminium salts ()
	(c) hydrogen sulphates ()
	(d) oxonium salts ()
6	. When ethyl methyl ether is treated with HI, the resulting iodide is
	(a) methyl iodide ()
	(b) ethyl iodide ()
	(c) propyl iodide ()
	(d) both methyl and ethyl iodides ()
7	. The hybridization state of C-atom in carbonyl compound is
	(a) sp ()
	(b) sp^2 ()
	(c) sp3 ()
	(d) dsp^2 ()

8.	The	IUPAC	name	of	the	compound
----	-----	--------------	------	----	-----	----------

	0
	Û
СІ—СН ₂ –	О -СН ₂ —С—СН ₃

is

- (a) 1-chlorobutan-3-one ()
- (b) 4-chlorobutan-2-one ()
- (c) 3-chlorobutan-2-one ()
- (d) 3-chloro-1-methylpropan-1-one (
- 9. Dehydration of alcohol is an example of
 - (a) elimination reaction ()
 - (b) addition reaction ()
 - (c) substitution reaction ()
 - (d) redox reaction ()
- 10. The formation of cyanohydrin from a ketone is an example of
 - (a) electrophilic addition ()
 - (b) electrophilic substitution ()
 - (c) nucleophilic substitution ()
 - (d) nucleophilic addition ()

(SECTION : B-SHORT ANSWERS)

(Marks: 15)

Answer five questions, taking at least one from each Unit:

 $3 \times 5 = 15$

Unit—I

- 1. Write the Corey-House method for the synthesis of n-propane.
- "Straight chain alkane has higher boiling point than its branch chain isomers." Explain.

UNIT-II

- 3. Explain why lower alcohols are soluble in water, but higher alcohols are not.
- 4. Write the chemical reactions of glycerol with-
 - (a) oxalic acid;
 - (b) conc. HNO3.

UNIT-III

5. Complete the following reaction:

H₃C—C=CH₂ + CH₃OH
$$\xrightarrow{\text{Hg(OCOCF}_3)_2} A \xrightarrow{\text{NaBH}_4} B$$
CH₃

6. Complete the following reaction and write its mechanism:

$$CH_3CH_2MgBr + H_2C \longrightarrow ? \xrightarrow{H_3O^+} ?$$

UNIT-IV

- 7. "Aldehydes are more reactive than ketones towards a nucleophile." Explain.
- 8. Draw and explain the structure of carbonyl group.

(SECTION : C-DESCRIPTIVE)

(Marks: 50)

Answer five questions, taking at least one from each Unit:

10×5=50

Unit—I

- (a) Explain how methane can be obtained by decarboxylation of sodium.
 acetate. Write the complete mechanism of the reaction.
 - (b) Explain halogenation of alkanes with a suitable example.

- 2. (a) Explain Wurtz reaction for the synthesis of n-butane. Write the mechanism of the reaction. 2+3=5
 - (b) What is isomerism? Explain functional group isomerism and metamerism with example. 1+4=5

Unit—II

- 3. (a) Explain Victor Meyer's test to distinguish among 1°-, 2°- and 3°-alcohols.
 - (b) How is glycerol obtained from fats or oils? Write the chemical reaction.
 - (c) Complete the following chemical reactions (mechanism not required):

 1×3=3

- 4. (a) Describe Lucas test to distinguish among 1°-, 2°- and 3°-alcohols.
 - (b) Complete the following reactions with suitable mechanisms (any two):

$$CH_2 = CH_2 + OsO_4 \longrightarrow ?$$

(ii) OH + Pb(OCOCH₃)₄
$$\longrightarrow$$
 ?

- (iii) $RCOOC_2H_5 \xrightarrow{Na} ?$
- (c) Write one chemical reaction to show acidity of an alcohol.

UNIT-III

- 5. (a) Describe Ziesel's method for the estimation of methoxy group.
 - (b) Explain Williamson ether synthesis giving suitable example.
 - (c) Complete the following reactions (mechanism not required): 1×3=3

(i)
$$RCH_2OC_2H_5 + O_2 \longrightarrow ?$$

(ii)
$$\sim$$
 OCH₃ + HNO₃ \sim ?

(iii)
$$H_3C-MgBr + \bigvee \frac{H_2O/H^{\oplus}}{}$$
?

6. (a) Complete the given reaction with suitable mechanism: 1+3=4

(b) Discuss with example the orientation of acid catalyzed ring opening in unsymmetrical epoxides. 3

1

(i)
$$\bigcirc$$
 OCH₃ + HI \longrightarrow ?

(iii)
$$\bigvee$$
 + NH₃ \longrightarrow ?

UNIT-IV

- 7. (a) How will you obtain the following? Write the chemical equations: 2×2=4
 - (i) Butanal from butanoyl chloride
 - (ii) 2-Butanone from propanoic acid
 - (b) Complete the following reactions with suitable mechanisms: 3×2=6

(i)
$$\longrightarrow$$
 + HCN \longrightarrow ?

8. (a) Write two chemical tests to distinguish between aldehydes and ketones.

(b) Complete the following reactions with suitable mechanisms: 3×2=6

(i)
$$H + NH_2NH_2 \xrightarrow{H^{\oplus}}$$
?

(ii)
$$C-CH_3 + NH_2CONHNH_2 \xrightarrow{H^{\oplus}}$$
 ?

 $\star\star\star$

2023

(NEP—2020)

(1st Semester)

CHEMISTRY (MAJOR)

(Organic Chemistry—I)

Full Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A—OBJECTIVE)

(Marks: 10)

Tick (✓) the correct answer in the brackets provided:

 $1 \times 10 = 10$

- 1. The ease of abstraction of different classes of hydrogen in halogenation reaction is in the order
 - (a) 1°-hydrogen > 2°-hydrogen > 3°-hydrogen ()
 - (b) 3°-hydrogen > 1°-hydrogen > 2°-hydrogen ()
 - (c) 2°-hydrogen > 3°-hydrogen > 1°-hydrogen ()
 - (d) 3°-hydrogen > 2°-hydrogen > 1°-hydrogen ()
- 2. The formation of alkanes by action of carbonyl-group on amalgamated zinc in hydrochloric acid is called
 - (a) Wurtz reaction (
 - (b) Kolbe reaction ()
 - (c) Clemmensen reduction ()
 - (d) Corey-House synthesis ()

(a) CH ₃ CH ₂ CH ₂ OH () (b) CH ₃ CH(OH)CH ₃ () (c) C ₆ H ₅ CH ₂ OH () (d) (CH ₃) ₃ COH () 4. Alcohols on treatment with Grignard's reagent give (a) alkene () (b) aldehyde () (c) alkane () (d) alkanoic acid () (d) alkanoic acid () (e) hydronium salts () (b) iminium salts () (c) hydrogen sulphates () (d) oxonium salts () (e) hydrogen sulphates () (f) hydrogen sulphates () (g) propyl iodide () (h) ethyl iodide () (c) propyl iodide () (d) both methyl and ethyl iodides () (d) both methyl and ethyl iodides () (d) sp ()
(b) CH ₃ CH(OH)CH ₃ () (c) C ₆ H ₅ CH ₂ OH () (d) (CH ₃) ₃ COH () Alcohols on treatment with Grignard's reag (a) alkene () (b) aldehyde () (c) alkane () (d) alkanoic acid () Ethers when treated with strong acids form (d) hydronium salts () (e) hydrogen sulphates () (f) hydrogen sulphates () (g) hydrogen sulphates () (hydrogen sulphates () (g) ethyl iodide () (h) ethyl iodide () (g) propyl iodide () (d) both methyl and ethyl iodides () (d) both methyl and ethyl iodides () (d) sp ()
(c) C ₆ H ₅ CH ₂ OH () Alcohols on treatment with Grignard's reag (a) alkene () (b) aldehyde () (c) alkane () (d) alkanoic acid () Ethers when treated with strong acids form (a) hydronium salts () (b) iminium salts () (c) hydrogen sulphates () (d) oxonium salts () (e) hydrogen sulphates () (f) propyl iodide () (g) methyl iodide () (h) ethyl iodide () (g) propyl iodide () (g) both methyl and ethyl iodides () (d) both methyl and ethyl iodides () (d) sp ()
(a) (CH3)3COH () Alcohols on treatment with Grignard's reage (a) alkene () (b) aldehyde () (c) alkane () (d) alkanoic acid () Ethers when treated with strong acids form () (a) alkanoic acid () (b) iminium salts () (c) hydrogen sulphates () (d) oxonium salts () (d) oxonium salts () (d) ethyl iodide () (e) methyl iodide () (c) propyl iodide () (d) both methyl and ethyl iodides () (d) both methyl and ethyl iodides () (d) both methyl and ethyl iodides () (d) sp ()
Alcohols on treatment with Grignard's reag (a) alkene () (b) aldehyde () (c) alkane () (d) alkanoic acid () Ethers when treated with strong acids form (a) hydronium salts () (c) hydrogen sulphates () (d) oxonium salts () (d) ethyl iodide () (e) propyl iodide () (f) propyl iodide () (g) both methyl and ethyl iodides () (d) both methyl and ethyl iodides () (d) sp ()
(a) alkene () (b) aldehyde () (c) alkane () (d) alkanoic acid () Ethers when treated with strong acids form (a) hydronium salts () (b) iminium salts () (c) hydrogen sulphates () (d) oxonium salts () When ethyl methyl ether is treated with HI, (a) methyl iodide () (b) ethyl iodide () (c) propyl iodide () (d) both methyl and ethyl iodides () (d) both methyl and ethyl iodides () (d) sp ()
(b) aldehyde () (c) alkane () (d) alkanoic acid () Ethers when treated with strong acids form (a) hydronium salts () (b) iminium salts () (c) hydrogen sulphates () (d) oxonium salts () When ethyl methyl ether is treated with HI, (a) methyl iodide () (b) ethyl iodide () (c) propyl iodide () (d) both methyl and ethyl iodides () (d) sp ()
(c) alkane () Ethers when treated with strong acids form (a) hydronium salts () (b) iminium salts () (c) hydrogen sulphates () (d) oxonium salts () When ethyl methyl ether is treated with HI, (a) methyl iodide () (b) ethyl iodide () (c) propyl iodide () (d) both methyl and ethyl iodides () (d) sp ()
(d) alkanoic acid () Ethers when treated with strong acids form (a) hydronium salts () (b) iminium salts () (c) hydrogen sulphates () (d) oxonium salts () When ethyl methyl ether is treated with HI, (a) methyl iodide () (b) ethyl iodide () (c) propyl iodide () (d) both methyl and ethyl iodides (The hybridization state of C-atom in carbony) (a) sp ()
Ethers when treated with strong acids form (a) hydronium salts () (b) iminium salts () (c) hydrogen sulphates () (d) oxonium salts () When ethyl methyl ether is treated with HI, (a) methyl iodide () (b) ethyl iodide () (c) propyl iodide () (d) both methyl and ethyl iodides (The hybridization state of C-atom in carbony) (a) sp ()
(a) hydronium salts () (b) iminium salts () (c) hydrogen sulphates () (d) oxonium salts () When ethyl methyl ether is treated with HI, (a) methyl iodide () (b) ethyl iodide () (c) propyl iodide () (d) both methyl and ethyl iodides (The hybridization state of C-atom in carbony (a) sp ()
 (b) iminium salts () (c) hydrogen sulphates () (d) oxonium salts () (e) methyl methyl ether is treated with HI, (a) methyl iodide () (b) ethyl iodide () (c) propyl iodide () (d) both methyl and ethyl iodides () The hybridization state of C-atom in carbony (a) sp ()
(c) hydrogen sulphates () (d) oxonium salts () When ethyl methyl ether is treated with HI, (a) methyl iodide () (b) ethyl iodide () (c) propyl iodide () (d) both methyl and ethyl iodides () The hybridization state of C-atom in carbony (a) sp ()
(d) oxonium salts () When ethyl methyl ether is treated with HI, (a) methyl iodide () (b) ethyl iodide () (c) propyl iodide () (d) both methyl and ethyl iodides (The hybridization state of C-atom in carbony (a) sp ()
When ethyl methyl ether is treated with HI, (a) methyl iodide () (b) ethyl iodide () (c) propyl iodide () (d) both methyl and ethyl iodides (The hybridization state of C-atom in carbony (a) sp ()
 (a) methyl iodide (b) ethyl iodide (c) propyl iodide (d) both methyl and ethyl iodides (The hybridization state of C-atom in carbony) (a) sp (b) methyl iodides (c) methyl iodides (d) iodides (e) methyl iodides (f) iodides (f) iodides (g) iodides
$(b) sp^2 $ ()
(c) sp^3 (\cdot)
$(d) dsp^2$ ()

compound
the
oţ
name
IUPAC
The
œ

13.

- (a) 1-chlorobutan-3-one ()
- (b) 4-chlorobutan-2-one ()
- (c) 3-chlorobutan-2-one (
- (d) 3-chloro-1-methylpropan-1-one (
- 9. Dehydration of alcohol is an example of
- (a) elimination reaction (
 - (b) addition reaction ()
- (c) substitution reaction (
- (d) redox reaction (
- The formation of cyanohydrin from a ketone is an example of 9
- electrophilic addition ()

(a)

- electrophilic substitution ()
- (c) nucleophilic substitution ()
- (d) nucleophilic addition (

(SECTION : B—SHORT ANSWERS)

(Marks: 15)

 $3 \times 5 = 15$ Answer five questions, taking at least one from each Unit:

UNIT

- Write the Corey-House method for the synthesis of n-propane. ij
- alkane has higher boiling point than its branch chain isomers." Explain. chain "Straight Ŕ

UNIT-II

- Explain why lower alcohols are soluble in water, but higher alcohols are not. က်
- Write the chemical reactions of glycerol with-4
- (a) oxalic acid;
- (b) conc. HNO3.

UNIT-III

5. Complete the following reaction:

$$H_3C-C=CH_2+CH_3OH-\frac{Hg(OCOCF_3)_2}{CH_3} \rightarrow A$$

Complete the following reaction and write its mechanism: 9

$$CH_3CH_2MgBr + H_2C \xrightarrow{} CH_2 \longrightarrow ? \xrightarrow{H_3O^+} ?$$

UNIT-IV

- "Aldehydes are more reactive than ketones towards a nucleophile." Explain. 7
- Draw and explain the structure of carbonyl group. œ

(SECTION : C-DESCRIPTIVE)

(Marks: 50)

Answer five questions, taking at least one from each Unit:

10×5=50

UNIT-I

- 2+3=5 Explain how methane can be obtained by decarboxylation of sodium. acetate. Write the complete mechanism of the reaction. 1. (a)
- Explain halogenation of alkanes with a suitable example. (q)

Write the IUPAC nomenclature of the following compounds: 0

 $1 \times 2 = 2$

CH₂--CH₂--CH₃ CH₂-ĊH3 H_3C Ë -CH₂-(ii) H₃C-

2+3=5 the reaction for the synthesis of n-butane. Write mechanism of the reaction. Explain Wurtz 2. (a)

1+4=5 and isomerism group functional Explain metamerism with example. isomerism? What is **(***q*)

UNIT—II

- 4 3 and 2, Explain Victor Meyer's test to distinguish among 1°-, alcohols. (g ю :
- How is glycerol obtained from fats or oils? Write the chemical reaction. (g)

3

 $1 \times 3 = 3$ Complete the following chemical reactions (mechanism not required) 0

(i)
$$\bigvee_{H_2O} \xrightarrow{LiAlH_4} ?$$

(ii)
$$CH_3COOH + C_2H_5OH = ?$$

(iii)
$$H_3C$$
—C—OH — Cu — ? CH_3 — CH_3

Describe Lucas test to distinguish among 1° -, 2° - and 3° -alcohols. (a) 4.

3,2% Complete the following reactions with suitable mechanisms (any $t_{oldsymbol{U}} \phi$. (**p**)

(i)
$$CH_2 = CH_2 + 0sO_4 \longrightarrow ?$$

(iii) RCOOC₂H₅
$$\xrightarrow{\text{Na}}$$
 ?

Write one chemical reaction to show acidity of an alcohol. <u>ပ</u>

UNIT-III

- Describe Ziesel's method for the estimation of methoxy group. (a) ió
- Explain Williamson ether synthesis giving suitable example. (q)
- Complete the following reactions (mechanism not required) (C)

1×3=3

(i)
$$RCH_2OC_2H_5 + O_2 \longrightarrow ?$$

(ii)
$$\left\langle \begin{array}{c} H_2SO_4 \\ \end{array} \right\rangle$$
 OCH₃ + HNO₃ $\left\langle \begin{array}{c} H_2SO_4 \\ \end{array} \right\rangle$

(iii)
$$H_3C-MgBr + \bigvee_{i} \frac{H_2O/H^{\oplus}}{i}$$

Complete the given reaction with suitable mechanism: (a) 9

Discuss with example the orientation of acid catalyzed ring opening in unsymmetrical epoxides. (q)

1+3=4

(c) Complete the following reactions (mechanism not required): 1×3=3

(iii)
$$\bigvee_{O}$$
 + NH₃ \longrightarrow ?

UNIT-IV

7. (a) How will you obtain the following? Write the chemical equations: 2×2=4

- (i) Butanal from butanoyl chloride
- (ii) 2-Butanone from propanoic acid

(b) Complete the following reactions with suitable mechanisms: 3×2=6

(ii)
$$O + HCN \longrightarrow ?$$
(ii) $O + NH_2OH \xrightarrow{H^{\oplus}} ?$

8. (a) Write two chemical tests to distinguish between aldehydes and ketones.

2+2=4

(b) Complete the following reactions with suitable mechanisms: 3×2=6

(i)
$$H + NH_2NH_2 \xrightarrow{H^{\oplus}}$$
?

(ii)
$$\sim C - CH_3 + NH_2CONHNH_2 \xrightarrow{H^{\oplus}} ?$$

* * *