2023

(CBCS)

(5th Semester)

PHYSICS

EIGHTH (A) PAPER

(Atomic and Molecular Spectroscopy)

Full Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick (✓) the correct answer in the brackets provided:

 $1 \times 10 = 10$

- In hydrogen spectrum, the wave number limit corresponding to Balmer series is
 - (a) R/4 (
 - (b) R/9 ()
 - (c) R/16 ()
 - (d) R/25 ()

where R is Rydberg constant.

- 2. The selection rule for Azimuthal quantum number (k) in Sommerfeld atomic model is
 - (a) $\Delta k = 0$ (
 - (b) $\Delta k = 0, \pm 1$ ()
 - (c) $\Delta k = \pm 1$ ()
 - (d) $\Delta k = \infty$ ()

3. The distance of the $^2d_{5/2}$ level from hypothetical term value for the centre of gravity of the doublet as a result of spin-orbit interaction is given by

(a)
$$\Gamma\left(j=\frac{5}{2}\right)=-\frac{3}{2}a$$
 (

(b)
$$\Gamma\left(j=\frac{5}{2}\right)=a$$
 ()

(c)
$$\Gamma\left(j=\frac{5}{2}\right)=\frac{1}{2}\alpha$$
 ()

(d)
$$\Gamma\left(j=\frac{5}{2}\right)=-a$$
 ()

(Symbols have their usual meanings)

4. The ground state of single electron system is always singlet and its spectral term symbol is written as

(a)
$${}^{1}S_{1/2}$$
 ()

(b)
$$^2S_{1/2}$$
 ()

(c)
$${}^{1}S_{0}$$
 ()

$$(d)^{-2}S_0$$
 ()

5. The number of normal Zeeman splitting components of ${}^{I}P - {}^{I}D$ transition is

6.	Due	to electron spin consi	ion in X-ray spectra, the M state	
	(a)	does not split ()	
	(b)	splits into 2 levels	()

(d) splits into 5 levels ()

(c) splits into 3 levels

7. In a non-rigid rotator, the molecules are in simple harmonic motion. The force constant k is given by

(a)
$$k = \pi^2 \omega^2 c^2 m \qquad ($$

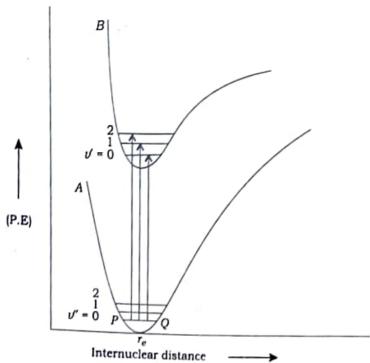
(b)
$$k = 2\pi \omega^2 c^2 m \qquad ($$

$$(c) \quad k = 4\pi^2 \omega^2 c^2 m \tag{}$$

(d)
$$k = 4\pi^2 \omega^2 c^2 m^2$$
 ()

where, $\omega = \text{vibrational frequency in met}^{-1}$, m = reduced mass of the molecule.

8. The molecular energy level can be divided into electronic E_e , vibrational E_{ν} and rotational E_r energy levels, the order of magnitude of these energy levels is


(a)
$$E_e > E_v < E_r$$
 ()

(b)
$$E_e > E_v > E_r$$
 ()

(c)
$$E_e < E_v > E_r$$
 ()

(d)
$$E_e = E_v = E_r$$
 ()

 During absorption or emission of radiation, the inter nuclear distance in a molecule does not change appreciably; the electronic transition should then be represented by

- (a) vertical line
- ()
- (b) horizontal line
- ()
- (c) the curve A
- 1
- (d) the curve B
-)

10. In an electronic vibrational transition, B' and J' refer to the upper electronic state, B'' and J'' to the lower state of rotational constant quantum number respectively, ν_0 is wave number, the frequency of radiation is

(a)
$$v_0 + B'J'(J'+2) - B''J''(J''+2) \text{ cm}^{-1}$$
 ()

(b)
$$v_0 - B'J'(J'+1) + B''J''(J''+1) \text{ cm}^{-1}$$
 ()

(c)
$$v_0 + B'J'(J'-2) - B''J''(J''-2) \text{ cm}^{-1}$$
 ()

(d)
$$v_0 + B'J'(J'+1) - B''J''(J''+1) \text{ cm}^{-1}$$
 ()

(SECTION : B—SHORT ANSWERS)

(Marks: 15)

Answer the following:

3×5=15

Unit-I

1. In Rutherford's experiment, the number of α particles scattered by an element of atomic number Z through an angle 60° is 112 per minute. Find the number of α particles scattered through an angle of 90° per minute scattered by an element of twice the atomic number.

OR

2. With the introduction of elliptical orbit by Sommerfeld, show that the orbit with principal quantum number n=3 splits into three sub-orbits.

UNIT-II

3. Find the maximum number of electrons with all the shells filled up to principal quantum number n=3.

OR

4. For a particular atomic state ${}^{2}P_{3/2}$, what are the different possible orientations of inner angular momentum in space (angle between inner angular momentum and vertical axis)?

Unit—III

5. How does sodium D line split when atom is subjected to low magnetic field? Draw energy level diagram showing π and σ components.

OR

6. Explain the method of pumping in LASER.

UNIT-IV

7. What is the selection rule for rotational transition in a non-rigid diatomic molecule?

OR

8. Define the coupling of rotation and vibration in spectroscopy.

UNIT-V

9. What are homonuclear diatomic molecules? Give an example of homonuclear diatomic molecules and write their electronic configurations.

OR

 Explain the temperature effects on spectral lines in the vibrational Raman spectra.

(SECTION : C-DESCRIPTIVE)

(Marks : 50)

Answer the following:

10×5=50

UNIT-I

 Discuss Rutherford's atomic model and its failure. Derive the formula for Rutherford's scattering cross-section.

OR

2. Derive the energy expression for electrons after the introduction of Sommerfeld relativistic mass correction. Up to what extend does it help in explaining the fine structure of H_{α} line?

7+3=10

Unit—II

3. (a) State and prove Larmor's theorem.

2+4=6

(b) What is the effect of space quantization introduced by vector atom model? Does it result in the formation of new energy level? 2+2=4

OR

- 4. (a) Discuss Stern-Gerlach experiment. How does it explain the vector atom model?
 4+4=8
 - (b) Find the Γ -factor for the p-orbital. Show it in a diagram with spectral notation.

Unit-III

5.	(a)	what are the normal and anomalous Zeeman effect? Explain anomalous Zeeman effect with vector atom model. 2+5:	=7						
	(b)	illustrate with diagrams the splitting of ² D level of sodium in weak and	•						
		3							
_	(~)	OR Evaluin V roy floor							
6.	(a)	Explain X-ray fluorescent and an Auger effect.	4						
	(b)	Derive the rate equation for three-level LASER system.	6						
		Unit—IV							
7.	(a)	Discuss the molecule as anharmonic oscillator and hence explain the formation of fundamental band, overtone band and the hot band.							
		3+4=	=7						
	(b)	Calculate the moment of inertia and inter-molecular distance of HCl							
		molecule. Given atomic weight of Hydrogen = 1.00794 amu and chlorine = 35.453 amu, $h = 6.62 \times 10^{-27}$ erg.sec and							
	6	$c = 3 \times 10^{10} \text{ cm sec}^{-1}$.	3						
		OR OR	٠						
8.	(a)	Define the coupling of rotation and vibration in spectroscopy.	3						
	(b)	Obtain the energy levels, frequency of spectral line, selection rule and the spectrum in rigid rotator.	7						
		Unit—V							
9.	(a)	Explain Fortrat diagram. Show that there is 10% difference between the two levels of rotational constants B' and B'' for the band head, which occurs at $p \approx 10$.	-6						
	(b)	occurs at $p \approx 10$. 2+4= What do you mean by the vibrational spectroscopy? Mention some	-0						
	(-)	important applications of vibrational spectroscopy. 2+2=	=4						
		OR							
10.	(a)	What are sequence and progressions in an electronic band system?	3						
	(b)	What is Raman effect? Define the quantum mechanical explanation of							
		Raman effect. 2+5=	=7						

2023

(CBCS)

(5th Semester)

PHYSICS

EIGHTH (A) PAPER

(Atomic and Molecular Spectroscopy)

Full Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick (✓) the correct answer in the brackets provided:

 $1 \times 10 = 10$

- 1. In hydrogen spectrum, the wave number limit corresponding to Balmer series is
 - (a) R/4
- ()
- (b) R/9
- ()
- (c) R/16
- ()
- (d) R/25
- ()

where R is Rydberg constant.

- 2. The selection rule for Azimuthal quantum number (k) in Sommerfeld atomic model is
 - (a) $\Delta k = 0$
- ()
- (b) $\Delta k = 0, \pm 1$
- ()
- (c) $\Delta k = \pm 1$
- (
- (d) $\Delta k = \infty$

3. The distance of the $^2d_{5/2}$ level from hypothetical term value for the centre of gravity of the doublet as a result of spin-orbit interaction is given by

(a)
$$\Gamma\left(j=\frac{5}{2}\right)=-\frac{3}{2}a$$
 ()

(b)
$$\Gamma\left(j=\frac{5}{2}\right)=a$$
 ()

(c)
$$\Gamma\left(j=\frac{5}{2}\right)=\frac{1}{2}\alpha$$
 ()

(d)
$$\Gamma\left(j=\frac{5}{2}\right)=-a$$

(Symbols have their usual meanings)

 The ground state of single electron system is always singlet and its spectral term symbol is written as

(a)
$${}^{1}S_{1/2}$$
 ()

(b)
$${}^2S_{1/2}$$
 ()

$$(d)$$
 ${}^{2}S_{0}$ ()

5. The number of normal Zeeman splitting components of ${}^{I}P - {}^{I}D$ transition is

6.	Due	to	electro	n spir	consi	deration	in	X-ray	spectra,	the	M state	
	(a)	doe	es not s	split	()						

7. In a non-rigid rotator, the molecules are in simple harmonic motion. The force constant k is given by

$$(a) \quad k = \pi^2 \omega^2 c^2 m \qquad ()$$

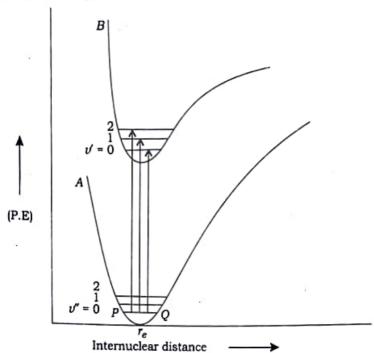
(b)
$$k = 2\pi \omega^2 c^2 m$$
 (1)

(c)
$$k = 4\pi^2 \omega^2 c^2 m$$
 ()

(d)
$$k = 4\pi^2 \omega^2 c^2 m^2$$
 ()

where, $\omega = vibrational$ frequency in met⁻¹, m = reduced mass of the molecule.

8. The molecular energy level can be divided into electronic E_e , vibrational E_{ν} and rotational E_r energy levels, the order of magnitude of these energy levels is


(a)
$$E_e > E_v < E_r$$
 ()

(b)
$$E_e > E_v > E_r$$
 ()

(c)
$$E_e < E_v > E_r$$
 ()

(d)
$$E_e = E_v = E_r$$
 (

9. During absorption or emission of radiation, the inter nuclear distance in a molecule does not change appreciably; the electronic transition should then be represented by

- (a) vertical line
- (b) horizontal line ()
- (c) the curve A ()
- (d) the curve B ()
- 10. In an electronic vibrational transition, B' and J' refer to the upper electronic state, B'' and J'' to the lower state of rotational constant quantum number respectively, v_0 is wave number, the frequency of radiation is

(a)
$$v_0 + B'J'(J'+2) - B''J''(J''+2) \text{ cm}^{-1}$$
 ()

)

(b)
$$v_0 - B'J'(J'+1) + B''J''(J''+1) \text{ cm}^{-1}$$
 ()

(c)
$$v_0 + B'J'(J'-2) - B''J''(J''-2) \text{ cm}^{-1}$$
 ()

(d)
$$v_0 + B'J'(J'+1) - B''J''(J''+1) \text{ cm}^{-1}$$
 (

(SECTION : B-SHORT ANSWERS)

(Marks: 15)

Answer the following:

 $3 \times 5 = 15$

UNIT-I

1. In Rutherford's experiment, the number of α particles scattered by an element of atomic number Z through an angle 60° is 112 per minute. Find the number of α particles scattered through an angle of 90° per minute scattered by an element of twice the atomic number.

OR

2. With the introduction of elliptical orbit by Sommerfeld, show that the orbit with principal quantum number n=3 splits into three sub-orbits.

UNIT-II

3. Find the maximum number of electrons with all the shells filled up to principal quantum number n = 3.

OR

4. For a particular atomic state ${}^{2}P_{3/2}$, what are the different possible orientations of inner angular momentum in space (angle between inner angular momentum and vertical axis)?

UNIT-III

5. How does sodium D line split when atom is subjected to low magnetic field? Draw energy level diagram showing π and σ components.

OR

6. Explain the method of pumping in LASER.

UNIT-IV

7. What is the selection rule for rotational transition in a non-rigid diatomic molecule?

OR

8. Define the coupling of rotation and vibration in spectroscopy.

UNIT-V

 What are homonuclear diatomic molecules? Give an example of homonuclear diatomic molecules and write their electronic configurations.

OR

 Explain the temperature effects on spectral lines in the vibrational Raman spectra.

(SECTION : C-DESCRIPTIVE)

(Marks : 50)

Answer the following:

10×5=50

UNIT-I

 Discuss Rutherford's atomic model and its failure. Derive the formula for Rutherford's scattering cross-section.

OR

2. Derive the energy expression for electrons after the introduction of Sommerfeld relativistic mass correction. Up to what extend does it help in explaining the fine structure of H_{α} line? 7+3=10

UNIT-II

3. (a) State and prove Larmor's theorem.

2+4=6

(b) What is the effect of space quantization introduced by vector atom model? Does it result in the formation of new energy level? 2+2=4

OR

- 4. (a) Discuss Stern-Gerlach experiment. How does it explain the vector atom model?
 - (b) Find the Γ-factor for the p-orbital. Show it in a diagram with spectral notation.
 1+1=2

UNIT-III

(b) Ill	hat are the normal and anomalous Zeeman effect? Explain comparison compared to the splitting of 2D level of sodium in weak and	
St	G G	3
	OR	
6. (a) E	xplain X-ray fluorescent and an Auger effect.	4
(b) D	erive the rate equation for three-level LASER system.	6
	Unit—IV	
	Discuss the molecule as anharmonic oscillator and hence explain the formation of fundamental band, overtone band and the hot band. 3+4	=7
1	Calculate the moment of inertia and inter-molecular distance of HCl molecule. Given atomic weight of Hydrogen = 1.00794 amu and chlorine = 35.453 amu, $h = 6.62 \times 10^{-27}$ erg.sec and	
9	$c = 3 \times 10^{10} \text{ cm sec}^{-1}$.	3
	OR	-
	Define the coupling of rotation and vibration in spectroscopy.	3
(b)	Obtain the energy levels, frequency of spectral line, selection rule and the spectrum in rigid rotator.	7
	Unit-V	
9. (a)	Explain Fortrat diagram. Show that there is 10% difference between the two levels of rotational constants B' and B'' for the band head, which occurs at $p \approx 10$.	4= 6
(b)	What do you mean by the vibrational spectroscopy? Mention some important applications of vibrational spectroscopy.	2=4
	OR	
	What are sequence and progressions in an electronic band system?	
(b)	What is Raman effect? Define the quantum mechanical explanation of	
	Raman effect. 2+	5=7
