PHY/V/CC/09

Student's Copy

2023

(CBCS)

(5th Semester)

PHYSICS

FIFTH PAPER

(Mathematical Physics-II)

Full Marks: 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick (√) the correct answer in the brackets provided :

- 1. The function $\frac{1}{(z-1)^{1/2}}$
 - (a) is analytic in the region |z| < 2 ()
 - (b) has a pole at z=1 ()
 - (c) has a branch point at z=1 ()
 - (d) has an essential singularity at z=1 ()

2. The value of $\left| \int_C \frac{dz}{z} \right|$, where C is |z|=1, is equal to

(a) $2\pi i$ () (b) 2π () (c) π () (d) 0 ()

/144

Contd.

1×10=10

3. For the linear differential equation

$$y'' + \frac{1}{2x-1}y' + \frac{x}{(2x-1)^2}y = 0$$
; where $y' = \frac{dy}{dx}$

- (a) x = 0 is a singular point ()
 (b) x = 1/2 is an irregular singular point ()
 (c) x = 1/2 is a regular singular point ()
 (d) x = 1/2 is an ordinary point ()
- 4. If $u(x, t) = \sum_{n=1}^{\infty} \{C_n \cos n\pi ct + D_n \sin n\pi ct\} \sin n\pi x$ be the expression for displacement of a vibrating string at any time t stretched between two fixed points (0, 0) and (1, 0) and released from the position $u(x, 0) = \lambda$ with initial velocity g(x) = 1, then

(a)
$$D_n = \frac{2}{n^2 \pi^2 c} (1 - \sin n\pi)$$
 ()

(b)
$$D_n = \frac{2}{n^2 \pi^2 c} (1 - \cos n\pi)$$
 ()

(c)
$$D_n = \frac{2}{n^2 \pi^2 c} (1 + \sin n\pi)$$
 ()

(d)
$$D_n = \frac{2}{n^2 \pi^2 c} (1 + \cos n\pi)$$
 ()

5. The value of the integral

$$\int_{-1}^{+1} (P_0 + 2P_1 + 3P_2) P_2 \, dx$$

is equal to

(a) $\frac{6}{5}$ () (b) $\frac{4}{5}$ () (c) 3 () (d) 0 ()

/144

[Contd.

- 6. The value of the integral $\int \frac{J_1(x)}{x} dx$ is
 - (a) $xJ_1(x) + c$ () (b) $\frac{1}{x}J_1(x) + c$ () (c) $-xJ_1(x) + c$ () (d) $-\frac{1}{x}J_1(x) + c$ ()

7. The finite Fourier sine transform of $\frac{x}{\pi}$ in the interval $(0, \pi)$ is

(a) $\frac{(-1)^{n+1}}{n}$ () (b) $\frac{(-1)^n}{n}$ () (c) $(-1)^n$ () (d) $(-1)^{n+1}$ ()

8. The Fourier transform of $\frac{df}{dt}$, i.e., $FT\left[\frac{df}{dt}\right]$ is

- (a) $\frac{\omega}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$ () (b) $\sqrt{\frac{\omega}{2\pi}} \int_{-\infty}^{\infty} f(t) e^{i\omega t} dt$ () (c) $\frac{i\omega}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$ ()
- $\sqrt{2\pi} \int_{-\infty}^{\infty} f(t) e^{i\omega t} dt \qquad ()$
- 9. If $\mathscr{L}[\sin t] = \frac{1}{s^2 + 1}$, then $\int_0^\infty \frac{\sin t}{t} dt$ is equal to (a) 0 () (b) $\frac{\pi}{4}$ () (c) $\frac{\pi}{2}$ () (d) π ()

10. If f(s) is the Laplace transform of F(t), then $\mathcal{Z}^{-1}[f(s \pm a)]$ is (a) $e^{\pm at}F(t)$ () (b) $e^{\mp at}F(t)$ () (c) $e^{\pm at}F(at)$ () (d) $e^{\mp at}F(at)$ ()

/144

[Contd.

(SECTION : B-SHORT ANSWERS)

(Marks: 15)

Answer the following questions in brief :

Unit—I

1. Find the analytic function f(z), whose real part is $e^x \cos y$.

OR

2. Evaluate the integral

$\oint_C \frac{dz}{z - \frac{3}{2}}$

where C is a circle |z-1|=1.

UNIT-II

3. Find the regular singular points of the differential equation $x^{2}(x-2)^{3}y'' + 2(x-2)y' + (x+3)y = 0$

OR

4. Obtain the solution of indicial equation for the differential equation

$$y'' + \frac{3}{x}y' + \frac{(3-x^2)}{x^2}y = 0$$

Unit—III

5. Show that $xJ'_n(x) = -nJ_n(x) + xJ_{n-1}(x)$, where $J_n(x)$ is Bessel's function. OR

6. Using Rodrigue's formula for $P_n(x)$, prove that

$$\int_{-1}^{+1} P_n(x) dx = 0; \quad (n \neq 0)$$

UNIT-IV

7. For a half-wave rectifier, current is given by

$$I = \begin{cases} I_0 \sin \omega t \; ; \; 0 \le t \le T / 2 \\ 0 \; ; \; T / 2 \le t \le T \end{cases}$$

Show that the Fourier coefficient $b_n = 0$ for all values of n.

/144

[Contd.

3×5=18

8. If $g(\omega)$ is the Fourier transform of f(t), then show that the Fourier transform of $f(t)\cos at$ is $\frac{1}{2}[g(\omega-a)+g(\omega+a)]$.

Unit-V

9. Evaluate the inverse Laplace transform of

$$\frac{1}{s^2(s^2-\omega^2)}$$

10. Show that the Laplace transform of $e^t \cos \omega t$ is

$$\frac{s-1}{(s-1)^2+\omega^2}$$

(SECTION : C-DESCRIPTIVE)

Answer the following questions :

Unit—I

- 1. (a) Derive the polar form of Cauchy-Riemann equation for the analyticity of a complex function.
 - (b) Using Cauchy's residue theorem, evaluate

$$\frac{1}{2\pi i} \int_C \frac{e^{zt}}{z^2 (z^2 - 2z + 2)} dz$$

where C is the circle |z| = 3.

OR

2. (a) If f(z) is analytic inside and on a simple closed curve C and a is any point inside C, then show that

$$f(a) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z-a} dz$$

(b) Expand
$$f(z) = \frac{1}{(z+1)(z+3)}$$
 in a Laurent series valid for $1 < |z| < 3$.

/144

પ્રસા ગે, તેનું તે

5

6

4

Unit—II

3. (a) Obtain the power series solution of the differential equation

$$\frac{d^2y}{dz^2} - \frac{2z}{(1-z^2)}\frac{dy}{dz} + \frac{2}{(1-z^2)}y = 0$$

about z = 1.

(b) Using the method of separation of variables, solve the differential equation

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 0$$
3

OR

- 4. (a) Write down the Laplace equation in 2-D polar coordinates and solve it by the method of separation of variables. 1+5=6
 - (b) If $u(x,t) = \sum_{n=1}^{\infty} C_n \cos n\pi ct \sin n\pi x$ be the expression for subsequent displacement of a string stretched between two fixed points and released at rest from the initial position $u(x,0) = \lambda \sin \pi x$, show that $C_n = 0$ for n > 1.

Unit—III

- 5. (a) Show that $H_n(x)$ is the coefficient of z^n in the expansion of $e^{x^2 (z-x)^2}$ in ascending powers of z. Hence prove that $H'_n(x) = 2nH_{n-1}(x)$. 4+3=7
 - (b) Using the recursion relation $nP_n(x) = (2n-1)xP_{n-1}(x) (n-1)P_{n-2}(x)$, show that

$$\int_{-1}^{+1} x P_n(x) P_{n-1}(x) \, dx = \frac{2n}{4n^2 - 1}$$

/144

б

Contd.

7

6. (a) Starting from the expression

$$J_n(x) = \sum_{r=0}^{\infty} \frac{(-1)^r}{r \, (r + r + 1)} \left(\frac{x}{2}\right)^{n+2r}$$

for Bessel's function, prove the following :

(i)
$$\frac{d}{dx}[J_0(x)] = -J_1(x)$$

(ii) $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$

(b) Using the expression
$$e^{x(z-\frac{1}{z})/2} = \sum_{-\infty}^{+\infty} z^n J_n(x)$$
, show that

- (i) $\cos(x\sin\phi) = J_0(x) + 2\cos 2\phi J_2(x) + 2\cos 4\phi J_4(x) + \cdots$
- (ii) $\sin(x\sin\varphi) = 2\sin\varphi J_1(x) + 2\sin 3\varphi J_3(x) + 2\sin 5\varphi J_5(x) + \cdots$ 2+2=4

7. (a) Express the function

$$f(x) = \begin{cases} 1 & \text{for } |x| \le 1\\ 0 & \text{for } |x| > 1 \end{cases}$$

as a Fourier integral.

- (b) Find the Fourier sine transform of $\frac{e^{-ax}}{x}$.
- (c) If $g(\omega)$ is the Fourier transform of f(t), show that the Fourier transform of f(at) is $\frac{1}{a}g\left(\frac{\omega}{a}\right)$.

OR

8. (a) Obtain the Fourier series of a function $f(x) = x^2$; $-\pi \le x \le \pi$. Hence show that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
4+1=5

(b) Find the Fourier transform of $e^{-|t|}$.

/144

[Contd.

2

3+3=6

4

4

(c) Using the properties of Dirac delta function, prove that

 $\delta(ax)=\frac{1}{a}\,\delta(x)\,;\quad a>0$

UNIT-V

9. (a) If
$$F(t)$$
 of period T such that $F(t+nT) = F(t)$, show the

$$\mathscr{Z}[F(t)] = \frac{1}{(1 - e^{-sT})} \int_0^T e^{-st} F(t) dt$$

Hence find the Laplace transform of sawtooth wave function $F(t) = \frac{at}{T}$ for 0 < t < T.

(b) Apply residue method to find the inverse Laplace transform of $\frac{a}{s^2 - a^2}$.

(c) Using Laplace transform, show that

$$\int_0^\infty t^2 e^{-t} \sin t dt = \frac{1}{2}$$

OR

10. (a) Show that

$$\mathscr{L}[S_i(t)] = \frac{1}{s} \tan^{-1}\left(\frac{1}{s}\right)$$

where sine integral function $S_i(t) = \int_0^t \frac{\sin x}{x} dx$.

(b) Use the Laplace transform method to solve the differential equation y'' + 9y = 0; satisfying the initial conditions y(0) = 0 and y'(0) = 2. Given that

$$\mathcal{L}^{-1}\left[\frac{3}{s^2+9}\right] = \sin 3t$$

Evaluate the function F(t), whose inverse Laplace transform is

at

 $f(s) = \log\left(\frac{s^2 - 1}{s^2}\right)$

/144

(c)

3

3 0

3

4

3

PHY/V/CC/09

Student's Copy

2023

(CBCS)

(5th Semester)

PHYSICS

FIFTH PAPER

(Mathematical Physics-II)

Full Marks: 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick (\checkmark) the correct answer in the brackets provided :

1. The function $\frac{1}{(z-1)^{1/2}}$ (a) is analytic in the region |z| < 2() has a pole at z=1(b)) (has a branch point at z=1 ((c)) (d) has an essential singularity at z=1) (2. The value of $\left| \int_C \frac{dz}{z} \right|$, where C is |z|=1, is equal to *(b)* 2π (a) 2πi ((d) 0 ((c) π)

[Contd.

/144

1×10=10

3. For the linear differential equation

$$y'' + \frac{1}{2x-1}y' + \frac{x}{(2x-1)^2}y = 0$$
; where $y' = \frac{dy}{dx}$

)

분용성

du

- (a) x = 0 is a singular point (
- (b) x = 1/2 is an irregular singular point ()
- (c) x = 1/2 is a regular singular point ()
- (d) x=1/2 is an ordinary point ()
- 4. If $u(x,t) = \sum_{n=1}^{\infty} \{C_n \cos n\pi ct + D_n \sin n\pi ct\} \sin n\pi x$ be the expression for displacement of a vibrating string at any time t stretched between two fixed points (0,0) and (1,0) and released from the position $u(x,0) = \lambda$ with initial velocity g(x) = 1, then

(a)
$$D_n = \frac{2}{n^2 \pi^2 c} (1 - \sin n\pi)$$
 ()

(b)
$$D_n = \frac{2}{n^2 \pi^2 c} (1 - \cos n\pi)$$
 ()

(c)
$$D_n = \frac{2}{n^2 \pi^2 c} (1 + \sin n\pi)$$
 ()

(d)
$$D_n = \frac{2}{n^2 \pi^2 c} (1 + \cos n\pi)$$
 ()

5. The value of the integral

$$\int_{-1}^{+1} (P_0 + 2P_1 + 3P_2) P_2 \, dx$$

is equal to

(a) $\frac{6}{5}$ () (b) $\frac{4}{5}$ () (c) 3 () (d) 0 ()

/144

- 6. The value of the integral $\int \frac{J_1(x)}{x} dx$ is
 - (a) $xJ_1(x) + c$ () (b) $\frac{1}{x}J_1(x) + c$ () (c) $-xJ_1(x) + c$ () (d) $-\frac{1}{x}J_1(x) + c$ ()

7. The finite Fourier sine transform of $\frac{x}{\pi}$ in the interval $(0,\pi)$ is

(a) $\frac{(-1)^{n+1}}{n}$ () (b) $\frac{(-1)^n}{n}$ () (c) $(-1)^n$ () (d) $(-1)^{n+1}$ ()

8. The Fourier transform of $\frac{df}{dt}$, i.e., FT $\left[\frac{df}{dt}\right]$ is

- (a) $\frac{\omega}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$ () (b) $\sqrt{\frac{\omega}{2\pi}} \int_{-\infty}^{\infty} f(t) e^{i\omega t} dt$ () (c) $\frac{i\omega}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$ () (d) $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{i\omega t} dt$ ()
- (d) $\frac{1}{i\omega\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{i\omega t} dt$ () 9. If $\mathscr{L}[\sin t] = \frac{1}{c^2 + 1}$, then $\int_{0}^{\infty} \frac{\sin t}{t} dt$ is equal to
- (a) 0 () (b) $\frac{\pi}{4}$
 - (c) $\frac{\pi}{2}$ () (d) π ()

10. If f(s) is the Laplace transform of F(t), then $\mathcal{Z}^{-1}[f(s \pm a)]$ is (a) $e^{\pm at}F(t)$ () (b) $e^{\mp at}F(t)$ (

(a) $e^{\pm at}F(t)$ (b) $e^{\pm at}F(t)$ (c) $e^{\pm at}F(at)$ (c) $(d) e^{\pm at}F($

/144

[Contd.

(SECTION : B-SHORT ANSWERS)

(*Marks* : 15)

Answer the following questions in brief :

Unit—I

1. Find the analytic function f(z), whose real part is $e^x \cos y$.

OR

2. Evaluate the integral

$$\oint_C \frac{dz}{z - \frac{3}{2}}$$

where C is a circle |z-1|=1.

Unit—II

3. Find the regular singular points of the differential equation $x^{2}(x-2)^{3}y'' + 2(x-2)y' + (x+3)y = 0$

OR

4. Obtain the solution of indicial equation for the differential equation

$$y'' + \frac{3}{x}y' + \frac{(3-x^2)}{x^2}y = 0$$

Unit—III

5. Show that $xJ'_n(x) = -nJ_n(x) + xJ_{n-1}(x)$, where $J_n(x)$ is Bessel's function. OR

6. Using Rodrigue's formula for $P_n(x)$, prove that

$$\int_{-1}^{+1} P_n(x) dx = 0; \quad (n \neq 0)$$

UNIT-IV

7. For a half-wave rectifier, current is given by

$$I = \begin{cases} I_0 \sin \omega t \; ; \; 0 \le t \le T/2 \\ 0 \; ; \; T/2 \le t \le T \end{cases}$$

Show that the Fourier coefficient $b_n = 0$ for all values of n.

/144

[Contd.

3×5≈15

8. If $g(\omega)$ is the Fourier transform of f(t), then show that the Fourier transform of $f(t)\cos at$ is $\frac{1}{2}[g(\omega-a)+g(\omega+a)]$.

UNIT-V

9. Evaluate the inverse Laplace transform of

$\frac{1}{s^2(s^2-\omega^2)}$

10. Show that the Laplace transform of $e^t \cos \omega t$ is

 $\frac{s-1}{(s-1)^2+\omega^2}$

(SECTION : C-DESCRIPTIVE)

(Marks: 50)

Answer the following questions :

Unit—I

- 1. (a) Derive the polar form of Cauchy-Riemann equation for the analyticity of a complex function.
 - (b) Using Cauchy's residue theorem, evaluate

$$\frac{1}{2\pi i} \int_C \frac{e^{zt}}{z^2 (z^2 - 2z + 2)} dz$$

where C is the circle |z| = 3.

OR

2. (a) If f(z) is analytic inside and on a simple closed curve C and a is any point inside C, then show that

$$f(a) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z-a} dz$$

(b) Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in a Laurent series valid for 1 < |z| < 3.

/144

10×5=50

5

6

4

- UNIT-II
- 3. (a) Obtain the power series solution of the differential equation

$$\frac{d^2y}{dz^2} - \frac{2z}{(1-z^2)}\frac{dy}{dz} + \frac{2}{(1-z^2)}y = 0$$

about z = 1.

(b) Using the method of separation of variables, solve the differential equation

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 0$$

OR

- 4. (a) Write down the Laplace equation in 2-D polar coordinates and solve it by the method of separation of variables.
 - (b) If $u(x,t) = \sum_{n=1}^{\infty} C_n \cos n\pi ct \sin n\pi x$ be the expression for subsequent displacement of a string stretched between two fixed points and released at rest from the initial position $u(x,0) = \lambda \sin \pi x$, show that $C_n = 0$ for n > 1.

Unit—III

- 5. (a) Show that $H_n(x)$ is the coefficient of z^n in the expansion of $e^{x^2 (z-x)^2}$ in ascending powers of z. Hence prove that $H'_n(x) = 2n H_{n-1}(x)$. 4+3=7
 - (b) Using the recursion relation $nP_n(x) = (2n-1)xP_{n-1}(x) (n-1)P_{n-2}(x)$, show that

$$\int_{-1}^{+1} x P_n(x) P_{n-1}(x) \, dx = \frac{2n}{4n^2 - 1}$$
3

/144

[Contd.

7

3

OR

6. (a) Starting from the expression

$$J_{n}(x) = \sum_{r=0}^{\infty} \frac{(-1)^{r}}{r \, |\Gamma(n+r+1)|} \left(\frac{x}{2}\right)^{n+2r}$$

for Bessel's function, prove the following :

(i)
$$dx^{[0]}(x) = -J_1(x)$$

(ii) $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$

(b) Using the expression
$$e^{x(z-\frac{1}{z})/2} = \sum_{-\infty}^{+\infty} z^n J_n(x)$$
, show that
(i) $\cos(x \sin \varphi) = J_0(x) + 2\cos 2\varphi J_2(x) + 2\cos 4\varphi J_4(x) + \cdots$
(ii) $\sin(x \sin \varphi) = 2\sin \varphi J_1(x) + 2\sin 3\varphi J_3(x) + 2\sin 5\varphi J_5(x) + \cdots$ 2+2=4

Unit—IV

7. (a) Express the function

$$f(x) = \begin{cases} 1 & \text{for } |x| \le 1 \\ 0 & \text{for } |x| > 1 \end{cases}$$

as a Fourier integral.

(b) Find the Fourier sine transform of $\frac{e^{-ax}}{x}$.

(c) If $g(\omega)$ is the Fourier transform of f(t), show that the Fourier transform of f(at) is $\frac{1}{a}g\left(\frac{\omega}{a}\right)$.

OR

8. (a) Obtain the Fourier series of a function $f(x) = x^2$; $-\pi \le x \le \pi$. Hence show that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

(b) Find the Fourier transform of $e^{-|t|}$.

144

2

4

4

2

3+3=6

(c) Using the properties of Dirac delta function, prove that

$$\delta(ax) = \frac{1}{a}\,\delta(x); \quad a > 0$$

9. (a) If F(t) of period T such that F(t+nT) = F(t), show that

$$\mathscr{L}[F(t)] = \frac{1}{(1 - e^{-sT})} \int_0^T e^{-st} F(t) dt$$

Hence find the Laplace transform of sawtooth wave function $F(t) = \frac{at}{T}$ for 0 < t < T.

- (b) Apply residue method to find the inverse Laplace transform of $\frac{a}{s^2 a^2}$. 3
- (c) Using Laplace transform, show that

$$\int_0^\infty t^2 e^{-t} \sin t dt = \frac{1}{2}$$

OR

10. (a) Show that

$$\mathscr{L}[S_i(t)] = \frac{1}{s} \tan^{-1}\left(\frac{1}{s}\right)$$

where sine integral function $S_i(t) = \int_0^t \frac{\sin x}{x} dx$.

(b) Use the Laplace transform method to solve the differential equation y'' + 9y = 0; satisfying the initial conditions y(0) = 0 and y'(0) = 2. Given that

$$\mathcal{Z}^{-1}\left[\frac{3}{s^2+9}\right] = \sin 3t$$

(c) Evaluate the function F(t), whose inverse Laplace transform is

$(s) = \log\left(\frac{s^2 - 1}{s^2}\right)$	3
--	---

/144

* * *

. 3

4

3

4

3

Δ