

Student's Copy

2023 (CBCS) (5th Semester)

MATHEMATICS

SEVENTH PAPER

(Complex Analysis)

Full Marks : 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick ☑ the correct answer in the boxes provided :

- 1. Which one of the following is correct for any two complex numbers z_1 and z_2 ?
 - $\begin{array}{l} (a) \quad ||z_1| |z_2|| \le (|z_1| |z_2|) \\ (b) \quad ||z_1| |z_2|| \le (|z_1| + |z_2|) \\ (c) \quad ||z_1| + |z_2|| \ge (|z_1| + |z_2|) \end{array} \qquad \Box$
 - (d) $||z_1| |z_2|| \ge (|z_1| |z_2|)$

/131

1

| Contd.

1×10=10

- 2. The complex number z satisfying |z-1| = |z-3| = |z-i| is
 - (a) 2+i(b) $\frac{3}{2} + \frac{1}{2}i$

 - (c) 2+2iП

(d) None of the above

3. The value of z for which the function w defined by $z = e^{-v} (\cos u + i \sin u)$, where w = u + iv ceases to be analytic, is

- (a) z = 0
- (b) z = ∞
- (c) z=i
- (d) z = -i \Box

4. Harmonic conjugate of the function $(x-1)^3 - 3xy^2 + 3y^2$ is

- (a) $3(x^2 y^2) + c$
- (b) 6y(1-x)+c
- (c) $3x^2y 6xy + 3y y^3 + c$
- (d) $3(x-1)^2 3xy + 6y + c$

5. The series $\sum n! z^n$ is convergent only for the value of

- (a) $z \neq 0$
- (b) 0 < |z| < 1

- (c) 1 < |z|
- (d) z = 0

6. The radius of convergence of the power series $\sum z^{n!}$ is

- (a) 0
- (b) ∞
- (c) 1
- (d) a real number greater than 1

/131

7. The value of $\int_C \operatorname{Re}(z) dz$, C: |z|=1, is

(b) 2π 🗆

(a)

0

- (c) πi 🗆
- (d) 2πi
- 8. The value of $\int_C z^n dz$, C:|z|=r and $n \neq -1$, is

 - (b) 2π 🗆
 - (c) 2πi 🗆
 - (d) 1 🗆
- 9. The function $f(z) = \log z$ has a/an
 - (a) isolated singularity at z = 0
 - (b) non-isolated singularity at $z \neq 0$
 - (c) essential singularity at z = 0
 - (d) isolated essential singularity at z=0
 - start und and "sum a source associated and the
- 10. The limit point of the poles of a function f(z) is
 - (a) a pole 🛛
 - (b) a non-isolated singularity \Box
 - (c) an isolated singularity
 - (d) a non-isolated essential singularity

 \square

(SECTION : B-SHORT ANSWERS)

(Marks : 15)

Answer the following :

Unit—I

1. For what value of k does the equation $z\overline{z} + (-3 + 4i)\overline{z} - (3 + 4i)z_{k \ge 0}$ represent a circle?

OR

2. For any two complex numbers z_1 and z_2 , prove that $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2$ if and only if $z_1\overline{z}_2$ is purely imaginary.

UNIT-II

3. For analytic function f(z), prove that

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f'(z)|^2$$

OR

4. If $u - v = (x - y)(x^2 + 4xy + y^2)$ and f(z) = u + iv is an analytic function of z = x + iy, then find f(z) in terms of z.

5. Show that the derivative series of the power series $\sum a_n z^n$ has the same radius of convergence as the original series.

OR

6. Find the radius of convergence of the series

$$\sum \frac{\left(1+\frac{1}{n}\right)^{n^2}}{n^3} z^n$$

/131

[Contr

3×5*15

Evaluate :

OR

8. If a function f(z) is analytic for finite value of z and is bounded, then show that f(z) is constant.

UNIT-V

9. Define a pole of order n with example.

 $\int_{-\infty}^{5+3i} z^3 dz$

OR

10. What kind of singularity does the function $f(z) = \frac{1}{1 - e^z}$ have at $z = 2\pi i$?

(SECTION : C-DESCRIPTIVE)

Answer the following :

- UNIT-I
- 1. (a) Find the locus of the point z satisfying $|z-1|+|z+1| \le 4$.
 - (b) Prove that the two points z_1 and z_2 will be inverse point with respect to the circle $z\overline{z} + \overline{\alpha}z + \alpha\overline{z} + r = 0$ if and only if $z_1\overline{z}_2 + \overline{\alpha}z_1 + \alpha\overline{z}_2 + r = 0$. 5

OR

2. (a) Determine the region of Argand diagram determined by

$$\left|\frac{z-1}{z+1}\right| \le 2$$

(b) Find the inverse of the point (1 + i) with respect to the circle whose centre is at i and radius is 2. 5

5

/131

| Contd.

10×5=50

UNIT-II

- **3.** (a) Prove that the function f(z) = u(x, y) + iv(x, y) is analytic in the domain v_x , v_y exist, are continuous and sate v_y . Prove that the function f(z) = u(x, y) + u(x, y) exist, are continuous and uomain D if the partial derivatives u_x , u_y , v_x , v_y exist, are continuous and uomain D satisfy
 - (b) Show that the function $\frac{1}{z^4}$, $z \neq 0$ is analytic and find its derivative.

OR

- **4.** (a) Show that the derivative of w = f(z) for $z = re^{i\theta}$ is $\frac{\partial w}{\partial r}e^{-i\theta}$.
 - (b) Examine the analyticity of the function

$$f(z) = \frac{x^2 y^5(x+iy)}{x^4 + y^{10}}, \ z \neq 0; \quad f(0) = 0$$

in a region including origin.

UNIT-III

- 5. (a) State and prove Cauchy-Hadamard theorem.
 - (b) Find the radius of convergence of the power series $\sum \frac{in+2}{2^n} z^n$. OR
- 6. (a) Find the centre and radius of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{1.3.5...(2n-1)}{n!} \left(\frac{1-z}{z}\right)^n$$

(b) Examine the behaviour of the power series $\sum_{n=1}^{\infty} \frac{z^{4n}}{4n+1}$ on the circle

Unit-IV

7. (a) State and prove Cauchy integral formula for an analytical function. (b) By using Cauchy integral formula, evaluate $\int_C \frac{dz}{z(z+\pi i)}$, where C is

/131

- g. (a) State and prove Taylor's theorem.
 - (b) Expand the function $\frac{z^2-1}{(z+2)(z+3)}$ in the following regions : 5 (i) |z| < 2
 - (ii) 2 < |z| < 3

UNIT-V

- 9. (a) Prove that a function f(z), which is regular everywhere except at infinity where it has a pole of order n, is a polynomial of degree n.
 - (b) Check all the singularities of

$$f(z) = \frac{1}{\tan\left(\frac{\pi}{z}\right)}$$

which lie on the real axis from z = -1 to z = 1.

OR

10. Find the kinds of singularity of the following functions :

(i)
$$\tan\left(\frac{1}{z}\right)$$
 at $z = 0$
(ii) $\sin\left(\frac{1}{1-z}\right)$ at $z = 1$
(iii) $\sin z - \cos z$ at $z = \infty$
(iv) $\frac{z^2 + 4}{e^z}$ at $z = \infty$

* * *

/131

5

10

5

MATH/V/CC/07

Student's Copy

2023

(CBCS)

(5th Semester)

MATHEMATICS

SEVENTH PAPER

(Complex Analysis)

Full Marks: 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick ☑ the correct answer in the boxes provided :

1×10=10

- 1. Which one of the following is correct for any two complex numbers z_1 and z_2 ?
 - (a) $||z_1| |z_2|| \le (|z_1| |z_2|)$
 - (b) $||z_1| |z_2|| \le (|z_1| + |z_2|)$
 - (c) $||z_1| + |z_2|| \ge (|z_1| + |z_2|)$
 - (d) $||z_1| |z_2|| \ge (|z_1| |z_2|)$

[Contd.

2. The complex number z satisfying |z-1| = |z-3| = |z-i| is

Π

- (a) 2+i (b) $\frac{3}{2}+\frac{1}{2}i$ (c) 2+2i (c) 2+2i
- (d) None of the above

3. The value of z for which the function w defined by $z = e^{-v}(\cos u + i \sin u)$, where w = u + iv ceases to be analytic, is

- (a) z=0
- (b) z = ∞ □
- (c) z = i
- (d) z = −i □

4. Harmonic conjugate of the function $(x-1)^3 - 3xy^2 + 3y^2$ is

- (a) $3(x^2 y^2) + c$
- (b) 6y(1-x)+c \Box
- (c) $3x^2y 6xy + 3y y^3 + c$
- (d) $3(x-1)^2 3xy + 6y + c$

5. The series $\sum n! z^n$ is convergent only for the value of

- (a) $z \neq 0$
- (b) 0 < |z| < 1
- (c) 1 < |z|
- $(d) \quad z=0 \qquad \Box$

6. The radius of convergence of the power series $\Sigma z^{n!}$ is

- (a) 0 🗆
- (b) ∞ □
- (c) 1 🗆
- (d) a real number greater than 1 \Box

/131

7. The value of $\int_C \operatorname{Re}(z) dz$, C: |z|=1, is

- (a) 0 🗆
- (b) 2π 🗆
 - (c) πi 🛛
 - (d) 2πi 🗌
- **8.** The value of $\int_C z^n dz$, C:|z|=r and $n \neq -1$, is
 - (a) 0 🗆
 - (b) 2π 🛛
 - (c) 2πi 🛛
 - (d) 1 🗆

9. The function $f(z) = \log z$ has a/an

- (a) isolated singularity at z = 0
- (b) non-isolated singularity at $z \neq 0$
- (c) essential singularity at z = 0
- (d) isolated essential singularity at z = 0

10. The limit point of the poles of a function f(z) is

- (a) a pole 🛛
- (b) a non-isolated singularity
- (c) an isolated singularity \Box
- (d) a non-isolated essential singularity

/131

(Marks: 15)

Answer the following :

Unit—I

1. For what value of k does the equation $z\overline{z} + (-3+4i)\overline{z} - (3+4i)z + k = 0$ represent a circle?

OR

2. For any two complex numbers z_1 and z_2 , prove that $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2$ if and only if $z_1\overline{z}_2$ is purely imaginary.

UNIT-II

3. For analytic function f(z), prove that

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2$$

OR

4. If $u - v = (x - y)(x^2 + 4xy + y^2)$ and f(z) = u + iv is an analytic function of z = x + iy, then find f(z) in terms of z.

Unit—III

5. Show that the derivative series of the power series $\sum a_n z^n$ has the same radius of convergence as the original series.

OR

6. Find the radius of convergence of the series

/131

3×5=15

UNIT-IV

7. Evaluate :

 $\int_{-\infty}^{5+3i} z^3 dz$

OR

8. If a function f(z) is analytic for finite value of z and is bounded, then show that f(z) is constant.

UNIT-V

9. Define a pole of order n with example.

OR

10. What kind of singularity does the function $f(z) = \frac{1}{1 - e^z}$ have at $z = 2\pi i$?

(SECTION : C-DESCRIPTIVE)

10×5=50

5

Answer the following :

UNIT-I

1. (a) Find the locus of the point z satisfying $|z-1|+|z+1| \le 4$.

(b) Prove that the two points z_1 and z_2 will be inverse point with respect to the circle $z\overline{z} + \overline{\alpha}z + \alpha\overline{z} + r = 0$ if and only if $z_1\overline{z}_2 + \overline{\alpha}z_1 + \alpha\overline{z}_2 + r = 0$. 5

OR

2.	(a)	Determine the region	of Argand diagram determined by			
			$\left \frac{z-1}{z}\right \leq 2$	1.14		5

$\left|\frac{z-1}{z+1}\right| \leq 2$

(b) Find the inverse of the point (1 + i) with respect to the circle whose 5 centre is at i and radius is 2.

/131

Contd.

UNIT—II

- 3. (a) Prove that the function f(z) = u(x, y) + iv(x, y) is analytic in the domain D if the partial derivatives u_x , u_y , v_x , v_y exist, are continuous and satisfy Cauchy-Riemann equation at each point of D.
 - (b) Show that the function $\frac{1}{z^4}$, $z \neq 0$ is analytic and find its derivative.

OR

- **4.** (a) Show that the derivative of w = f(z) for $z = re^{i\theta}$ is $\frac{\partial w}{\partial r}e^{-i\theta}$.
 - (b) Examine the analyticity of the function

$$f(z) = \frac{x^2 y^5(x+iy)}{x^4 + y^{10}}, \ z \neq 0; \quad f(0) =$$

in a region including origin.

- 5. (a) State and prove Cauchy-Hadamard theorem.
 - (b) Find the radius of convergence of the power series $\sum \frac{n+2}{2^n} z^n$.

OR

6. (a) Find the centre and radius of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{1.3.5...(2n-1)}{n!} \left(\frac{1-z}{z}\right)^n$$
 5

(b) Examine the behaviour of the power series $\sum_{n=1}^{\infty} \frac{z^{4n}}{4n+1}$ on the circle of convergence.

UNIT-IV

- 7. (a) State and prove Cauchy integral formula for an analytical function. 5
 - (b) By using Cauchy integral formula, evaluate $\int_C \frac{dz}{z(z+\pi i)}$, where C is |z+3i|=4.

Contd

6

4

5

5

7

3

5

0......

- 8. (a) State and prove Taylor's theorem.
 - (b) Expand the function $\frac{z^2-1}{(z+2)(z+3)}$ in the following regions :
 - (i) |z|<2
 (ii) 2 < |z|<3

Unit-V

- 9. (a) Prove that a function f(z), which is regular everywhere except at infinity where it has a pole of order n, is a polynomial of degree n.
 - (b) Check all the singularities of

$$f(z) = \frac{1}{\tan\left(\frac{\pi}{z}\right)}$$

which lie on the real axis from z = -1 to z = 1.

OR

10. Find the kinds of singularity of the following functions :

(i)
$$\tan\left(\frac{1}{z}\right)$$
 at $z = 0$
(ii) $\sin\left(\frac{1}{1-z}\right)$ at $z = 1$

(iii)
$$\sin z - \cos z$$
 at $z = \infty$

(iv)
$$\frac{z^2+4}{e^z}$$
 at $z=\infty$

5

5

5

5