MATH/V/CC/06

Student's Copy

141

2023

(CBCS)

(5th Semester)

MATHEMATICS

SIXTH PAPER

(Real Analysis)

Full Marks: 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick ☑ the correct answer in the boxes provided :

- 1. Every finite set is
 - (a) open but not closed \Box
 - (b) both closed and open
 - (c) neither open nor closed
 - (d) closed but not open
- **2.** Let ξ be a limit point of a set S and N be any neighbourhood of ξ , then

(a)
$$N \cap S = \phi$$

- (b) $N \cap S = \{\xi\}$
- (c) $N \cap S$ is a finite set \Box
- (d) $N \cap S$ is an infinite set \Box

1×10=10

 3. Every subset of the discrete metric space is (a) neither open nor closed (b) open as well as closed (c) open but not closed (d) closed but not open
4. Which of the following metric spaces is not compact?
(a) A closed interval with the usual metric \Box
(b) The discrete space (X, d) where X is a finite set \Box
 (c) The space (R, d), where R is the set of real numbers with the usual metric
(d) A closed subset of a compact metric space \Box
5. A real-valued function continuous on a compact set is
(a) bounded above but not below
(b) bounded and attains its bounds
(c) bounded below but not above
(d) bounded and does not attain its bounds \Box
6. A function $f: D \to R, D \subset \mathbb{R}^n$ is continuous if and only if
(a) $f^{-1}(V)$ is closed in R for every closed set V in D
(b) $f(V)$ is closed in R for every closed set V in D
(c) $f^{-1}(V)$ is open in R for any set V in D
(d) $f(V)$ is open in R for every open set V in R
7. Let $f: D \to R$, $D \subset R^2$ is differentiable at a point $(x, y) \in D$, if for any point

- 7. Let $f: D \to R$, $D \subset R^{-}$ is differentiable at a point $(x, y) \in D$, if for any point (x + h, y + k) in a neighbourhood of (a, b), the change in f can be expressed as
 - (a) $f_x(x, y)k + f_y(x, y)h + h\phi + k\psi$, where ϕ and ψ are functions of h, k and both tend to zero as $(h, k) \rightarrow (0, 0)$
 - (b) $f_x^2(x, y)h + f_y^2(x, y)k + h\phi + k\psi$, where ϕ and ψ are functions of h, k and both tend to zero as $(h, k) \rightarrow (0, 0)$

- (c) $f_x(x, y)h + f_y(x, y)k + h\phi + k\psi$, where ϕ and ψ are functions of h, k and both tend to zero as $(h, k) \rightarrow (0, 0)$
- (d) $f_x^2(x, y)k + f_y^2(x, y)h + h\phi + k\psi$, where ϕ and ψ are functions of h, k and both tend to zero as $(h, k) \rightarrow (0, 0)$
- 8. If $y_1, y_2, ..., y_n$ are determined as functions of $x_1, x_2, ..., x_n$ by the functional equations $f_i(x_1, x_2, ..., x_n; y_1, y_2, ..., y_n) = 0$, i = 1 to n, then $\frac{\partial(f_1, f_2, ..., f_n)}{\partial(x_1, x_2, ..., x_n)} =$

$$(a) \quad \frac{\partial (f_1, f_2, ..., f_n)}{\partial (y_1, y_2, ..., y_n)} \frac{\partial (y_1, y_2, ..., y_n)}{\partial (x_1, x_2, ..., x_n)} \qquad \square$$

$$(b) \quad -\frac{\partial (f_1, f_2, ..., f_n)}{\partial (y_1, y_2, ..., y_n)} \frac{\partial (y_1, y_2, ..., y_n)}{\partial (x_1, x_2, ..., x_n)} \qquad \square$$

$$(c) \quad (-1)^n \frac{\partial (f_1, f_2, ..., f_n)}{\partial (y_1, y_2, ..., y_n)} \frac{\partial (y_1, y_2, ..., y_n)}{\partial (x_1, x_2, ..., x_n)} \qquad \square$$

$$(d) \quad (-1)^{n+1} \frac{\partial (f_1, f_2, ..., f_n)}{\partial (y_1, y_2, ..., y_n)} \frac{\partial (y_1, y_2, ..., y_n)}{\partial (x_1, x_2, ..., x_n)} \qquad \square$$

9. Let f: D → R, D ⊂ Rⁿ and (a, b) ∈ D. Then f_{xy}(a, b) = f_{yx}(a, b) if
(a) f_x and f_y are both continuous at (a, b)
(b) f_x is continuous at (a, b) and f_y exists at (a, b)
(c) f_x and f_y are both differentiable at (a, b)
(d) f_x is differentiable at (a, b) and f_y exists at (a, b)

10. A necessary condition for f(x, y) to have an extreme value at (a, b) is that

(a)
$$f_x(a, b) = 0 = f_y(a, b)$$

(b) $f_{xx}(a, b) = 0 = f_{yy}(a, b)$
(c) $f_{xy}(a, b) = 0 = f_{yx}(a, b)$
(d) $f_x(a, b) = f_y(0, 0) \neq 0$

/130

Contd.

1. Show that every open set is a union of open intervals.

 Show by an example that boundedness is not a necessary condition for an infinite set to have a limit point.

(SECTION : B-SHORT ANSWERS)

(Marks : 15)

UNIT-I

Unit—II

3. Let (X, d) be any metric space. Prove that a subset of X is closed if and only if its complement is open.

OR

4. Show that the discrete space is a complete metric space.

Unit—III

5. Prove that the image of a compact set under a continuous function is compact.

OR

6. Show that the function

Answer the following :

$$f(x, y) = \begin{cases} \frac{2x(x^2 - y^2)}{x^2 + y^2} , & (x, y) \neq (0, 0) \\ 0 & , & (x, y) = (0, 0) \end{cases}$$

is continuous at (0, 0).

UNIT-IV

7. Let $f: D \to R, D \subset R^2$ and $(a, b) \in D$. If f_x exists throughout a neighbourhood of a point of (a, b) and $f_y(a, b)$ exists, then prove that for any point (a + h, b + k) of this neighbourhood

$$f(a + h, b + k) - f(a, b) = hf_x(a + \theta h, b + k) + k\{f_y(a, b) + n\}$$

where $0 < \theta < 1$ and η is a function of k which tends to 0 with k.

| Contd.

3×5≈1:

OR

 \mathfrak{s} . Show that the function

$$f(x, y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} , & (x, y) \neq (0, 0) \\ 0 & , & (x, y) = (0, 0) \end{cases}$$

is differentiable at the origin.

UNIT-V

9. Show that $f_{xy}(0, 0) = f_{yx}(0, 0)$ for the function $f(x, y) = \begin{cases} \frac{(x^2y^2)}{x^2 + y^2} &, (x, y) \neq (0, 0) \\ 0 &, (x, y) = (0, 0) \end{cases}$

OR

10. Using Taylor's theorem, expand $e^x \cos(y)$ about $\left(0, \frac{\pi}{2}\right)$ up to the second

degree term.

(SECTION : C-DESCRIPTIVE)

(Marks : 50)

Answer the following :

UNIT-I

1. (a) State and prove Bolzano-Weierstrass theorem. 1+5=6

(b) Prove that the derived set of a set is closed.

OR

(a) State and prove Heine-Borel theorem using Lindelöf covering theorem.
 1+5=6

(b) If a sequence of closed intervals $[a_n, b_n]$ is such that $[a_{n+1}, b_{n+1}] \subset [a_n, b_n]$ and $\lim_{n \to \infty} (a_n - b_n) = 0$, then prove that there is one and only one point common to all the intervals.

/130

| Contd.

10×5=50

UNIT-II

3. (a) Prove that the space \mathbb{R}^n of all ordered *n*-tuples with the metric *d*, where

$$d(x, y) = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{\frac{1}{2}}$$

is a complete metric space.

(b) Prove that every closed subset of a compact metric space is compact. 4

OR

- 4. (a) Prove that any compact subset of a metric space is closed and bounded. 5
 - (b) Let (X, d) be a complete metric space. Let Y be any non-empty subset of X. Then show that Y is complete if and only if it is closed.

Unit—III

- 5. (a) Define uniform continuity of a function of n-variables. Prove that a function continuous on a compact set is uniformly continuous. 1+5=6
 - (b) Discuss the continuity of the function $f(x, y) = \sqrt{|xy|}$ at (0, 0).

OR

- **6.** (a) Prove that a function $f: D \to R$, $D \subset \mathbb{R}^n$ is continuous if and only if $f^{-1}(U)$ is open in \mathbb{R}^n for every open set U in R.
 - (b) Let $f: D \to R$, $D \subset \mathbb{R}^n$, where D is a convex set. Show that f assumes every value between f(x) and f(y), $\forall x, y \in D$. 5

UNIT-IV

7. (a) If α , β , γ are the roots of the equation in t such that

$$\frac{u}{a+t} + \frac{v}{b+t} + \frac{w}{c+t} = 1$$

then show that

$$\frac{\partial(u, v, w)}{\partial(\alpha, \beta, \gamma)} = \frac{(\beta - \alpha)(\beta - \gamma)(\gamma - \alpha)}{(\alpha - b)(b - c)(c - a)}$$

/130

| Contd.

5

6

5

4

5

(b) Let $f: D \to R$, $D \subset R^2$ and $(a, b) \in D$. Show that if f_x is continuous at (a, b) and $f_y(a, b)$ exists, then f is differentiable at (a, b).

OR

 \mathfrak{s} . (a) Prove that a function which is differentiable at a point possesses the first-order partial derivatives at that point but the converse is not necessarily true.

(b) Find the directional derivative of $f(x, y) = x \cos y$ in the direction of $\vec{y} = (2, 1)$ at the point $(0, \pi)$.

UNIT-V

9. (a) State and prove Schwarz's theorem for a function of two variables. 1+5=6

(b) Show that the condition of Young's theorem is not satisfied for the function

$$f(x, y) = \begin{cases} (x^2 + y^2)\log(x^2 + y^2), & \text{when } x^2 + y^2 \neq 0\\ 0, & \text{when } x = y = 0 \end{cases}$$

at (0, 0).

OR

10. (a) State Taylor's theorem for two variables. Hence, find the expansion of 1+4=5 $e^{ax}\cos(by)$ up to four terms. 5

- (b) Examine any one of the following functions for extreme values :
 - (i) $f(x, y) = (x^2 + y^2 4)^2 x^2$ (ii) $f(x, y) = x^2y^2 - 5x^2 - 8xy - 5y^2$

5

6

4