(SECTION : B-SHORT ANSWERS)

(Marks: 15)

Answer the following :

UNIT-I

1. Solve $\frac{dy}{dx} = \sin(x+y)$.

OR

2. Check the exactness of the differential equation

$$\left\{y\left(1+\frac{1}{x}\right)+\cos y\right\}dx+\left(x+\log x-x\sin x\right)dy=0$$

and solve it.

Unit—II

3. Solve
$$(D^2 + 5 - 2D)y = 10 \sin x$$
.

OR

4. Find the particular integral of $(D^3 + D^2 - 6D)y = 1 + x^2$, where $D = \frac{dy}{dx}$.

Unit—III

5. Find the general and singular solutions of $p^3 + y^2 = 1$. OR

6. Solve
$$p + \frac{1}{p} = \frac{10}{3}$$

/128

3×5=15

7. Solve $x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y = 2\log x$. OR

$$\int Solve (yz + xyz)dx + (zx + xyz)dy + (xy + xyz)dz = 0.$$

10. Find the integral of
$$p^3 + q^3 = 27z$$
.

(SECTION : C-DESCRIPTIVE)

(Marks : 50)

- 1. (a) Find the differential equation of the family of curves $y = Ae^{3x} + Be^{5x}$ 5 for different values of A and B.
 - (b) Solve the differential equation

$$(x+y)^2 \frac{dy}{dx} = a^2 \tag{5}$$

2. (a) Solve :

/128

$$(1 - x^2)\frac{dy}{dx} - xy = 1$$
 5

(b) Reduce the equation $(3x^2 + 4xy)dx + (2x^2 + 2y)dy = 0$ to exact form and solve it.

5

[Contd.

Unit—II

3. Solve the following :

1-1

(a)
$$(D^2 - 2D + 1)y = x \sin x$$

(b) $(D^3 + 3D^2 + 2D)y = x^2$

OR

4. (a) Solve
$$(D^2 - 2D + 4)y = e^x \cos x$$
.

(b) Solve the differential equation $(D^2 + 4)y = x \sin x$

UNIT-III

5. (a) Solve the differential equation $p^3 - p(y+3) + x = 0$

where $p = \frac{dy}{dx}$.

(b) Find the orthogonal trajectories of the family of curves $\frac{x^2}{a^2} + \frac{y^2}{b^2 + \lambda} = 1$

 λ being parameter.

OR

- **6.** (a) Reduce the differential equation (px y)(x yp) = 2p to Clairaut's form by substituting $x^2 = u$, $y^2 = v$ and find its general and singular solutions.
 - (b) Solve $y = x + p^3$, where $p = \frac{dy}{dx}$.

UNIT-IV

7. (a) Solve the equation

$$x^{3*}\frac{d^{3}y}{dx^{3}} + 2x^{2}\frac{d^{2}y}{dx^{2}} + 2y = 10\left(x + \frac{1}{x}\right)$$

/128

6

5

5+5≈10

5

5

5

5

5

(b) Show that the equation

 $x\frac{d^{3}y}{dx^{3}} + (x^{2} - 3)\frac{d^{2}y}{dx^{2}} + 4x\frac{dy}{dx} + 2y = 0$

is exact and solve it.

OR

g, (a) Check the condition of integrability and solve the equation $yz^{2}(x^{2} - yz)dx + zx^{2}(y^{2} - xz)dy + xy^{2}(z^{2} - xy)dz = 0$

(b) Transform the equation

 $x\frac{d^2y}{dx^2} - \frac{dy}{dx} + 4x^3y = x^5$

and find the solution.

Unit—V

- 9. (a) Use Lagrange's auxiliary equations to solve the equation $(x^{3} + 3xy^{2})p + (y^{3} + 3x^{2}y)q = 2(x^{2} + y^{2})z$
 - (b) Apply Charpit's method to find the complete integral of the equation px + qy = pq. 5

OR

10. (a) Find the general solution of the equation

$$(y^2 + z^2 - x^2)p - 2xyq + 2zx = 0$$
5

(b) Solve
$$\cos(x+y)p + \sin(x+y)q = z$$
.

* * *

/128

7

5

5

5

5

MATH/V/CC/05

Student's Copy

2023

(CBCS)

(5th Semester)

MATHEMATICS

FIFTH PAPER

(Computer-Oriented Numerical Analysis)

Full Marks : 75

Time : 3 hours

Use of Calculator is allowed

(SECTION : A-OBJECTIVE)

(Marks: 10)

Each question carries 1 mark

Put a Tick ☑ mark against the correct answer in the boxes provided :

1. Δe^{ax+b} (where a and b are constants and Δ denotes the forward difference operator) equals to

(a)
$$e^{ax+b}(e^h+1)$$

(b)
$$e^{ax+b}(e^{h}-1)$$
 [

(c)
$$e^{ax+b}(e^{ah}+1)$$

(d) $e^{ax+b}(e^{ah}-1)$

/129

2. The second approximation of the root of the equation $x^3 - x - 1 = 0$ bisection method is

- (a) 1.5 (b) 1.25

 (c) 2.5 (d) 2.25
- 3. If f(x) = 1/x, then the divided difference of $\delta(b, a)$ is
 - (a) $-\frac{1}{ab}$ \Box (b) $\frac{1}{ab}$ \Box (c) $\frac{(a+b)}{ab}$ \Box (d) $\frac{(a-b)}{ab}$ \Box

4. Lagrange's interpolation polynomial for the data f(0) = 0, f(1) = 0 and f(3) = 6 is

- (a) (x-1)(x+1)
- (b) $x^2 + 1$
- (c) x(x-1)
- (d) x(x+1)

5. The method of obtaining the solution of the system of equations by reducing the matrix A to a diagonal matrix is known as

- (a) Gauss-Seidel iteration method
- (b) Gauss elimination method
- (c) Gauss-Jordan method
- (d) Crout's method

6. The system of equations

 $a_1x + a_2y + a_3z = d_1; \ b_1x + b_2y + b_3z = d_2; \ c_1x + c_2y + c_3z = d_3$ is a diagonal system, if

- (a) $|a_1| \ge |a_2| + |a_3|$, $|b_1| \ge |b_2| + |b_3|$, $|c_1| \ge |c_2| + |c_3|$
- (b) $|a_1| \ge |a_2| + |a_3|$, $|b_2| \ge |b_1| + |b_3|$, $|c_3| \ge |c_1| + |c_2|$
- (c) $|a_1| \le |a_2| + |a_3|$, $|b_1| \le |b_2| + |b_3|$, $|c_1| \le |c_2| + |c_3|$
- (d) $|a_1| \le |a_2| + |a_3|$, $|b_2| \le |b_1| + |b_3|$, $|c_3| \le |c_1| + |c_2|$

/129

[Contd.

- 7. When numerical integration is applied for the integration of a function of single variable, then the method is called
 - (a) trapezoidal rule
 - (b) general quadrature
 - (c) Simpson's 1/3rd rule
 - (d) mechanical quadrature

8. In the general quadrature formula $\int_{x_0}^{x_0+nh} y \, dx$ of Simpson's 1/3rd rule

- (a) n must be even \Box
- (b) n must be odd 🛛 🗌
- (c) $n = 1, 2, 3, \cdots$
- (d) n = 4 and n = 6
- 9. For solving ordinary differential equation numerically, which among the following is applied if successive integration can be obtained easily?
 - (a) Euler's method
 - (b) Taylor's method
 - (c) Picard's method
 - (d) Runge-Kutta method
- 10. The Euler's modified formula is given by

(a)
$$y_{n+1} = y_n + h f(x_n, y_n)$$

(b) $y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$
(c) $y_{n+1} = y_n + \frac{h}{3} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$

(d)
$$y_{n+1} = y_n + h [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$$

/129

[Contd.

(SECTION : B-SHORT ANSWERS)

(Marks: 15)

Each question carries 3 marks

Answer the following :

UNIT-I

1. Prove that $E\nabla = \Delta = \delta E^{1/2}$, where Δ , ∇ , δ and E are forward, backward, central and shift operator respectively.

OR

2. Find the second difference of the polynomial

$$f(x) = x^4 - 12x^3 + 42x^2 - 30x + 9$$

with h = 2 and hence find $\Delta^4 f(x)$.

Unit—II

3. Use Newton's forward interpolation formula to find the value of y for x = 5:

x	4	6	8	10
y	1	3	8	16

OR

4. Find the missing term in the given table :

x	2	3	4	5	6
y	45.0	49·2	54·1	<u> </u>	67.4

Unit—III

5. Solve the following system of equations by Crout's method :

x + y = 2 and 2x + 3y = 5

OR

6. Solve the system of equations

2x + y = 3; 2x + 3y = 5

by Gauss-Seidel iteration method up to sixth iteration.

/129

| Conti

Unit—IV

7. Find f'(2) from the following table :

x	1	2	3	4	5
y	0	3	8	15	24
	OR		7. S. ²		

8. Write the algorithm for Simpson's 1/3rd rule.

UNIT-V

9. Using Euler's method, solve $\frac{dy}{dx} = x - y$ with y(0) = 1 and find y(0.4) by taking h = 0.2.

OR

10. Compute $y(0 \cdot 1)$ by Runge-Kutta method of fourth-order for the differential equation

$$\frac{dy}{dx} = xy + y^2, \ y(0) = 1$$

(SECTION : C-DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions

Answer the following :

UNIT-I

- 1. (a) Use the method of iteration to find the real root lying between 1 and 2 of the equation $x^3 3x + 1 = 0$.
 - (b) Write an algorithm for solving a given equation by using bisection method.

OR

- 2. (a) Find the smallest positive root of $x^2 x 12 = 0$ by regula-falsi method. 5
 - (b) Find the positive root of the equation

$$3x - \cos x - 1 = 0$$

by Newton-Raphson method correct up to four decimal places.

5

5

10×5=50

6

Unit—II

- 3. (a) Obtain Newton's forward interpolation formula for interpolation with equal intervals of the argument.
 - (b) Find the value of y at the point x = 0.045 using the following table :

x	0.01	0.02	0.03	0.04	0.02
y	98·434	48.439	31.778	23.449	18.454

OR

4. (a) Deduce Lagrange's interpolation formula for unequal interval.

(b) Using Newton's divided difference formula, evaluate f(8), given that

x	0	2	5	9	11
$f(\mathbf{x})$	1	5	116	712	1310

Unit—III

5. (a) Solve the following by Gaussian elimination method :

$$3x + y + 2z = 3$$
, $2x - 3y - z = -3$, $x + 2y + z = 4$

(b) Solve the following by Crout's method :

$$2x - 6y + 8z = 24;$$
 $5x + 4y - 3z = 2;$ $3x + y + 2z = 16$

OR

6. (a) Solve the following system of linear equations by Gauss-Jordan method: 4 x + y + z = 9, 2x - 3y + 4z = 13, 3x + 4y + 5z = 40

(b) Solve the following system of equations by Gauss-Seidel method : 6x + 15y + 2z = 72, x + y + 54z = 110, 27x + 6y - z = 85

UNIT-IV

7. (a) Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using trapezoidal rule with h = 0.2. Hence determine the value of π .

/129

[Contd.

4

5

5

5

5

7

(b) Obtain the first and second derivatives of the function tabulated below, at the point x = 0.51:

x	0.4	0.5				
11	1.5826404	0.5	0.6	0.7	0.8	
9	1.5836494	1.7974426	2.0442376	2.3275054	2.6510818	

OR

- **g.** (a) Obtain the formula for the second-order derivative $\frac{d^2y}{dx^2}$ or f''(x) for numerical differentiation.
 - (b) Compute by Simpson's rule the value of the integral taking 10 points :

$$I=\int_0^5 e^{-x^2}dx$$

Unit—V

- 9. (a) Solve $y' = x y^2$, y(0) = 1 at the point 0.1 up to four decimal places by Taylor's series method.
 - (b) Find the value of y(0.1) by Picard's method given that

$$\frac{dy}{dx} = \frac{y-x}{y+x}, \quad y(0) = 1$$

OR

- 10. (a) Apply Euler's method with h = 0.1 to find the solution of the equation y' = x + y with initial condition y = 1 for x = 0 in the range $0 \le x \le 1$.
 - (b) Given

$$\frac{dy}{dx} = \frac{1}{x+y}$$

y(0) = 2. If $y(0 \cdot 2) = 2 \cdot 09$, $y(0 \cdot 4) = 2 \cdot 17$ and $y(0 \cdot 6) = 2 \cdot 24$, then find $y(0 \cdot 8)$ using Milne's method. 5

/129

5

5

6

5

MATH/V/CC/05

Student's Copy

2023

(CBCS)

(5th Semester)

MATHEMATICS

FIFTH PAPER

(Computer-Oriented Numerical Analysis)

Full Marks : 75

Time : 3 hours

Use of Calculator is allowed

(SECTION: A-OBJECTIVE)

(Marks: 10)

Each question carries 1 mark

Put a Tick I mark against the correct answer in the boxes provided :

1. Δe^{ax+b} (where a and b are constants and Δ denotes the forward difference operator) equals to

(a)
$$e^{ax+b}(e^{n}+1)$$

- (b) $e^{ax+b}(e^{h}-1)$
- (c) $e^{ax+b}(e^{ah}+1)$
- (d) $e^{ax+b}(e^{ah}-1)$

/129

- 2. The second approximation of the root of the equation $x^3 x 1 = 0$ using bisection method is
 - (a) 1·5 \Box (b) 1.25 (c) 2·5 (d) 2·25
- 3. If f(x) = 1 / x, then the divided difference of $\delta(b, a)$ is
 - (a) $-\frac{1}{ab}$ (b) $\frac{1}{ab}$ (c) $\frac{(a+b)}{ab}$ (d) $\frac{(a-b)}{ab}$
- **4.** Lagrange's interpolation polynomial for the data f(0) = 0, f(1) = 0 and f(3) = 6 is
 - (a) (x-1)(x+1)
 - (b) $x^2 + 1$
 - (c) x(x-1)
 - (d) x(x+1)

5. The method of obtaining the solution of the system of equations by reducing the matrix A to a diagonal matrix is known as

- (a) Gauss-Seidel iteration method
- (b) Gauss elimination method
- (c) Gauss-Jordan method
- (d) Crout's method
- 6. The system of equations

 $a_1x + a_2y + a_3z = d_1; \ b_1x + b_2y + b_3z = d_2; \ c_1x + c_2y + c_3z = d_3$ is a diagonal system, if

- (a) $|a_1| \ge |a_2| + |a_3|$, $|b_1| \ge |b_2| + |b_3|$, $|c_1| \ge |c_2| + |c_3|$
- (b) $|a_1| \ge |a_2| + |a_3|$, $|b_2| \ge |b_1| + |b_3|$, $|c_3| \ge |c_1| + |c_2|$
- (c) $|a_1| \le |a_2| + |a_3|, |b_1| \le |b_2| + |b_3|, |c_1| \le |c_2| + |c_3|$
- (d) $|a_1| \le |a_2| + |a_3|, |b_2| \le |b_1| + |b_3|, |c_3| \le |c_1| + |c_2|$ \Box

- 7. When numerical integration is applied for the integration of a function of single variable, then the method is called
 - (a) trapezoidal rule \Box
 - (b) general quadrature П
 - (c) Simpson's 1/3rd rule Π
 - (d) mechanical quadrature \Box

8. In the general quadrature formula $\int_{x_0}^{x_0+nh} y \, dx$ of Simpson's 1/3rd rule

- (a) n must be even
- (b) n must be odd Π
- (c) $n = 1, 2, 3, \cdots$
- (d) n = 4 and n = 6
- 9. For solving ordinary differential equation numerically, which among the following is applied if successive integration can be obtained easily?
 - (a) Euler's method
 - Π (b) Taylor's method
 - (c) Picard's method Π
 - (d) Runge-Kutta method

10. The Euler's modified formula is given by

(a)
$$y_{n+1} = y_n + hf(x_n, y_n)$$

(b) $y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$
(c) $y_{n+1} = y_n + \frac{h}{3} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$
(d) $y_{n+1} = y_n + h [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$

/129

(SECTION : B-SHORT ANSWERS)

(Marks: 15)

Each question carries 3 marks

Answer the following :

UNIT-I

1. Prove that $E\nabla = \Delta = \delta E^{1/2}$, where Δ , ∇ , δ and E are forward, backward, central and shift operator respectively.

OR

2. Find the second difference of the polynomial

$$f(x) = x^4 - 12x^3 + 42x^2 - 30x + 9$$

with h = 2 and hence find $\Delta^4 f(x)$.

UNIT-II

3. Use Newton's forward interpolation formula to find the value of y for x = 5:

x	4	6	8	10
y	1	3	8	16

- OR 4. Find the missing term in the given table :

x	2	3	4	-		
y	45.0	49.2	54.1	5	6	
			011		67.4	

Unit—III

5. Solve the following system of equations by Crout's method :

$$x + y = 2$$
 and $2x + 3y = 5$

OR

6. Solve the system of equations

$$2x + y = 3; 2x + 3y = 5$$

by Gauss-Seidel iteration method up to sixth iteration.

/129

UNIT-IV

7. Find f'(2) from the following table :

x	1	2	3	4	5
y	0	3	8	15	24

	•	-	
		1	
•	-		

8. Write the algorithm for Simpson's 1/3rd rule.

UNIT-V

9. Using Euler's method, solve $\frac{dy}{dx} = x - y$ with y(0) = 1 and find y(0.4) by taking h = 0.2.

OR

10. Compute $y(0 \cdot 1)$ by Runge-Kutta method of fourth-order for the differential equation

$$\frac{dy}{dx} = xy + y^2, \ y(0) = 1$$

(SECTION : C-DESCRIPTIVE)

The figures in the margin indicate full marks for the questions

Answer the following :

UNIT-I

- 1. (a) Use the method of iteration to find the real root lying between 1 and 2 of the equation $x^3 3x + 1 = 0$.
 - (b) Write an algorithm for solving a given equation by using bisection method.

2. (a) Find the smallest positive root of
$$x^2 - x - 12 = 0$$
 by regula-falsi method. 5

(b) Find the positive root of the equation

$$3x - \cos x - 1 = 0$$

5

by Newton-Raphson method correct up to four decimal places. 5

10×5=50

6

Unit—II

- 3. (a) Obtain Newton's forward interpolation formula for interpolation with equal intervals of the argument.
 - (b) Find the value of y at the point x = 0.045 using the following table :

x	0.01	0.02	0.03	0.04	0.02
y	98.434	48.439	31.778	23.449	18.454

OR

4. (a) Deduce Lagrange's interpolation formula for unequal interval.

(b) Using Newton's divided difference formula, evaluate f(8), given that

x	0	2	5	9	11
$f(\mathbf{x})$	1	5	116	712	1310

Unit—III

5. (a) Solve the following by Gaussian elimination method :

3x + y + 2z = 3, 2x - 3y - z = -3, x + 2y + z = 4

(b) Solve the following by Crout's method :

2x-6y+8z=24; 5x+4y-3z=2; 3x+y+2z=16

OR

6. (a) Solve the following system of linear equations by Gauss-Jordan method : 4

x + y + z = 9, 2x - 3y + 4z = 13, 3x + 4y + 5z = 40

(b) Solve the following system of equations by Gauss-Seidel method : 6x+15y+2z=72, x+y+54z=110, 27x+6y-z=85

UNIT-IV

7. (a) Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using trapezoidal rule with h = 0.2. Hence determine the value of π .

/129

[Contd.

4

5

5

5

5

3

7

(b) Obtain the first and second derivatives of the function tabulated below, at the point x = 0.51:

x	0.4	0.2	0.6	0.7	0.8
y	1.5836494	1.7974426	2.0442376	2.3275054	2·6510818

OR

- 8. (a) Obtain the formula for the second-order derivative $\frac{d^2y}{dx^2}$ or f''(x) for numerical differentiation.
 - (b) Compute by Simpson's rule the value of the integral taking 10 points :

$$I=\int_0^5 e^{-x^2} dx$$

UNIT-V

- 9. (a) Solve $y' = x y^2$, y(0) = 1 at the point 0.1 up to four decimal places by Taylor's series method.
 - (b) Find the value of $y(0 \cdot 1)$ by Picard's method given that

$$\frac{dy}{dx} = \frac{y-x}{y+x}, \quad y(0) = 1$$

OR

- 10. (a) Apply Euler's method with h = 0.1 to find the solution of the equation y' = x + y with initial condition y = 1 for x = 0 in the range $0 \le x \le 1$.
 - (b) Given

$$\frac{dy}{dx} = \frac{1}{x+y}$$

y(0) = 2. If $y(0 \cdot 2) = 2 \cdot 09$, $y(0 \cdot 4) = 2 \cdot 17$ and $y(0 \cdot 6) = 2 \cdot 24$, then find $y(0 \cdot 8)$ using Milne's method.

* * *

7

/129

6

5

5

5

5

MATH/V/CC/06

Student's Copy

2023

(CBCS)

(5th Semester)

MATHEMATICS

SIXTH PAPER

(Real Analysis)

Full Marks : 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick ☑ the correct answer in the boxes provided :

1. Every finite set is

- (a) open but not closed
- (b) both closed and open
- (c) neither open nor closed \Box
- (d) closed but not open

2. Let ξ be a limit point of a set S and N be any neighbourhood of ξ , then

- (a) $N \cap S = \phi$
- (b) $N \cap S = \{\xi\}$
- (c) $N \cap S$ is a finite set \Box
- (d) $N \cap S$ is an infinite set \Box

/130

1×10=10

з.	Eve	very subset of the discrete metric space is						
	(a)	neither open nor closed						
	(b)	open as well as closed						
	(c)	open but not closed \Box						
	(d)	closed but not open						
4.	Wh	ich of the following metric spaces is not compact?						
	(a) A closed interval with the usual metric \Box							
	(b)	The discrete space (X, d), where X is a finite set \Box						
	(c)	The space (R, d) , where R is the set of real numbers with the usual metric \Box						
(d) A closed subset of a compact metric space \Box								
5.	eal-valued function continuous on a compact set is							
	(a)	bounded above but not below \Box						
	(b)							
	(c)							
	(d)	bounded and does not attain its bounds \Box						
6.	A fi	A function $f: D \to R, D \subset \mathbb{R}^n$ is continuous if and only if						
		$f^{-1}(V)$ is closed in R for every closed set V in D						
		f(V) is closed in R for every closed set V in D						
		$f^{-1}(V)$ is open in R for any set V in D						
		f(V) is open in R for every open set V in R						
7.	Let	Let $f: D \to R$, $D \subset R^2$ is differentiable at a point $(x, y) \in D$, if for any point						
		h, y + k) in a neighbourhood of (a, b) , the change in f can be expressed						
	(a)	$f_x(x, y)k + f_y(x, y)h + h\phi + k\psi$, where ϕ and ψ are functions of h , k and both tend to zero as $(h, k) \rightarrow (0, 0)$						
	(b)	$f^{2}(x, y)h + f^{2}(x, y)k + h\phi + kw$, where ϕ and w are functions of h k and						

(b) $f_x^2(x, y)h + f_y^2(x, y)k + h\phi + k\psi$, where ϕ and ψ are functions of h, k and both tend to zero as $(h, k) \rightarrow (0, 0)$

/130

[Contd.

- (c) $f_x(x, y)h + f_y(x, y)k + h\phi + k\psi$, where ϕ and ψ are functions of h, k and both tend to zero as $(h, k) \rightarrow (0, 0)$
- (d) $f_x^2(x, y)k + f_y^2(x, y)h + h\phi + k\psi$, where ϕ and ψ are functions of h, k and both tend to zero as $(h, k) \rightarrow (0, 0)$
- 8. If $y_1, y_2, ..., y_n$ are determined as functions of $x_1, x_2, ..., x_n$ by the functional equations $f_i(x_1, x_2, ..., x_n; y_1, y_2, ..., y_n) = 0$, i = 1 to n, then $\frac{\partial(f_1, f_2, ..., f_n)}{\partial(x_1, x_2, ..., x_n)} =$
 - $\begin{array}{l} (a) \quad \frac{\partial (f_1, f_2, ..., f_n)}{\partial (y_1, y_2, ..., y_n)} \frac{\partial (y_1, y_2, ..., y_n)}{\partial (x_1, x_2, ..., x_n)} \\ (b) \quad \frac{\partial (f_1, f_2, ..., f_n)}{\partial (y_1, y_2, ..., y_n)} \frac{\partial (y_1, y_2, ..., y_n)}{\partial (x_1, x_2, ..., x_n)} \\ (c) \quad (-1)^n \frac{\partial (f_1, f_2, ..., f_n)}{\partial (y_1, y_2, ..., y_n)} \frac{\partial (y_1, y_2, ..., y_n)}{\partial (x_1, x_2, ..., x_n)} \\ (d) \quad (-1)^{n+1} \frac{\partial (f_1, f_2, ..., f_n)}{\partial (y_1, y_2, ..., y_n)} \frac{\partial (y_1, y_2, ..., y_n)}{\partial (x_1, x_2, ..., x_n)} \\ \end{array}$

10. A necessary condition for f(x, y) to have an extreme value at (a, b) is that

(a) $f_x(a, b) = 0 = f_y(a, b)$ (b) $f_{xx}(a, b) = 0 = f_{yy}(a, b)$ (c) $f_{xy}(a, b) = 0 = f_{yx}(a, b)$ (d) $f_x(a, b) = f_y(0, 0) \neq 0$

/130

[Contd.

(Marks: 15)

Answer the following :

UNIT-I

1. Show that every open set is a union of open intervals.

OR

 Show by an example that boundedness is not a necessary condition for an infinite set to have a limit point.

Unit—II

 Let (X, d) be any metric space. Prove that a subset of X is closed if and only if its complement is open.

OR

4. Show that the discrete space is a complete metric space.

UNIT-III

Prove that the image of a compact set under a continuous function is compact.

OR

6. Show that the function

$$f(x, y) = \begin{cases} \frac{2x(x^2 - y^2)}{x^2 + y^2} , & (x, y) \neq (0, 0) \\ 0 & , & (x, y) = (0, 0) \end{cases}$$

is continuous at (0, 0).

UNIT-IV

7. Let $f: D \to R, D \subset R^2$ and $(a, b) \in D$. If f_x exists throughout a neighbourhood of a point of (a, b) and $f_y(a, b)$ exists, then prove that for any point (a + h, b + k) of this neighbourhood

$$f(a + h, b + k) - f(a, b) = hf_x(a + \theta h, b + k) + k\{f_y(a, b) + \eta\}$$

where $0 < \theta < 1$ and η is a function of k which tends to 0 with k.

[Contd.

3×5≈15

8. Show that the function

$$f(x, y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} , & (x, y) \neq (0, 0) \\ 0 , & (x, y) = (0, 0) \end{cases}$$

is differentiable at the origin.

UNIT-V

9. Show that $f_{xy}(0, 0) = f_{yx}(0, 0)$ for the function

$$f(x, y) = \begin{cases} \frac{(x^2y^2)}{x^2 + y^2} &, (x, y) \neq (0, 0) \\ 0 &, (x, y) = (0, 0) \end{cases}$$

OR

10. Using Taylor's theorem, expand $e^x \cos(y)$ about $\left(0, \frac{\pi}{2}\right)$ up to the second degree term.

(SECTION : C-DESCRIPTIVE)

Answer the following :

UNIT-I

1. (a) State and prove Bolzano-Weierstrass theorem. 1+5=6

(b) Prove that the derived set of a set is closed.

OR

- 2. (a) State and prove Heine-Borel theorem using Lindelöf covering theorem.
 - 1+5=6 (b) If a sequence of closed intervals $[a_n, b_n]$ is such that $[a_{n+1}, b_{n+1}] \subset [a_n, b_n]$ and $\lim_{n \to \infty} (a_n - b_n) = 0$, then prove that there is one and only one point common to all the intervals.

/130

4

10×5=50

Unit—II

3. (a) Prove that the space \mathbb{R}^n of all ordered *n*-tuples with the metric *d*, where

$$d(x, y) = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{\frac{1}{2}}$$

is a complete metric space.

(b) Prove that every closed subset of a compact metric space is compact.

OR

- 4. (a) Prove that any compact subset of a metric space is closed and bounded. 5
 - (b) Let (X, d) be a complete metric space. Let Y be any non-empty subset of X. Then show that Y is complete if and only if it is closed.

UNIT—III

- 5. (a) Define uniform continuity of a function of *n*-variables. Prove that a function continuous on a compact set is uniformly continuous. 1+5=6
 - (b) Discuss the continuity of the function $f(x, y) = \sqrt{|xy|}$ at (0, 0).

OR

- 6. (a) Prove that a function $f: D \to R$, $D \subset R^n$ is continuous if and only if $f^{-1}(U)$ is open in R^n for every open set U in R.
 - (b) Let $f: D \to R$, $D \subset \mathbb{R}^n$, where D is a convex set. Show that f assumes every value between f(x) and f(y), $\forall x, y \in D$.

UNIT—IV

7. (a) If α , β , γ are the roots of the equation in t such that

$$\frac{u}{a+t} + \frac{v}{b+t} + \frac{w}{c+t} = 1$$

then show that

$$\frac{\partial (u, v, w)}{\partial (\alpha, \beta, \gamma)} = \frac{(\beta - \alpha)(\beta - \gamma)(\gamma - \alpha)}{(a - b)(b - c)(c - \alpha)}$$

/130

| Conta

5

6 4

5

5

5

(b) Let $f: D \to R$, $D \subset R^2$ and $(a, b) \in D$. Show that if f_x is continuous at (a, b) and $f_y(a, b)$ exists, then f is differentiable at (a, b).

OR

- 8. (a) Prove that a function which is differentiable at a point possesses the first-order partial derivatives at that point but the converse is not necessarily true.
 - (b) Find the directional derivative of $f(x, y) = x \cos y$ in the direction of $\vec{v} = (2, 1)$ at the point $(0, \pi)$.

Unit-V

- 9. (a) State and prove Schwarz's theorem for a function of two variables.
 - (b) Show that the condition of Young's theorem is not satisfied for the function

$$f(x, y) = \begin{cases} (x^2 + y^2)\log(x^2 + y^2), & \text{when } x^2 + y^2 \neq 0\\ 0, & \text{when } x = y = 0 \end{cases}$$

at (0, 0).

OR

10.	(a)	State Taylor's theorem f	or two	variables.	Hence,	find	the	expansion	of
		$e^{ax}\cos(by)$ up to four t	erms.						1+4=5

(b) Examine any one of the following functions for extreme values : 5
 (i) f(x, y) = (x² + y² - 4)² - x²
 (ii) f(x, y) = x²y² - 5x² - 8xy - 5y²

* * *

/130

5

6

4

1+5=6