MATH/I/EC/01

Student's Copy

2023

(CBCS)

(1st Semester)

MATHEMATICS

FIRST PAPER

(Calculus)

Full Marks: 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick (\checkmark) the correct answer in the brackets provided :

1×10=10

1. The derivative of $\sin x$ with respect to $\cos x$ is

- $(a) \tan x$ ()
- $(b) -\cot x \quad ()$
- (c) $\tan x$ ()
- $(d) \cot x \quad ()$

/127

- 2. The *n*th derivative of $5x^n$ is
 - (a) $5n(n-1)^{x^{n-1}}$ ()
 - (b) (5n)! ()
 - (c) 5n! ()
 - (d) 5x(n-1)! ()

3. The function $f(x) = \log x$ can be expanded in power of (x-1) by using

- (a) Maclaurin's theorem ()
- (b) Taylor's theorem ()
- (c) Leibnitz's theorem ()
- (d) None of the above ()

4. The value of c of the mean value theorem for the function $f(x) = x^2$ in the interval [1, 2] is

- (a) 0 ()
- (b) 1 ()
- (c) 0.5 ()
- (d) 1.5 ()

5. If for an even function f(x), $\int_0^1 f(x) dx = 4$, then the value of $\int_{-1}^1 f(x) dx$ is

- (a) 4 ()
- (b) -4 ()
- (c) 8 ()
- (d) -8 ()

/127

6. The value of the integral $\int_0^{\pi/4} \tan^5 \theta d\theta$ is

(a)
$$\frac{1}{4}\log 2$$
 ()
(b) $\frac{1}{4}(2\log 2 - 1)$ ()
(c) $\frac{1}{4}(\log 2 - 1)$ ()
(d) $\frac{1}{4}(\log 3 - 1)$ ()

7. Let $f(x, y) = \frac{x+y}{x^2+y}$, when $x^2 + y \neq 0$. Then $\lim f(x, y)$ as $(x, y) \rightarrow (1, -1)$ along the line x = 1 is

- (a) 0 ()
- (b) 1 ()
- (c) Does not exist ()
- (d) None of the above ()

8. If
$$f(x, y) = ax^2 + 2hxy + by^2$$
, then $x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y}$ is

- (a) $2(ax^2 + 2hxy + by^2)$ () (b) $ax^2 + 2hxy + by^2$ ()
- (c) $\frac{1}{2}(ax^2 + 2hxy + by^2)$ ()
- (d) None of the above ()

 9. If in a sequence < x_n >, lim x_n is finite, the sequence is (a) convergent
 (b)

- (b) divergent ()
- (c) oscillatory ()
- (d) Cauchy ()

/127

10. Every Cauchy sequence must be

- (a) monotonic ()
- (b) bounded above only ()
- (c) bounded below only ()
- (d) bounded ()

(SECTION : B-SHORT ANSWERS)

(Marks: 15)

Answer the following questions :

UNIT-I

1. Use L' Hospital rule to evaluate

$$\lim_{x \to 0} \frac{e^x + \sin x - 1}{\log (1 + x)}$$

OR

- 2. Find y_n , if $y = x^2 e^{ax}$.
- Unit—II
- **3.** Expand e^x in an infinite series in powers of x.

OR

4. Verify Rolle's theorem for $f(x) = x\sqrt{a^2 - x^2}$ on [0, a].

Unit—III

5. Find the reduction formula for $\int e^{ax} x^n dx$.

OR

6. Find $\int \sec^6 x \, dx$.

/127

[Contd.

3×5=15

UNIT-IV

7. Prove that $\int_0^1 \int_0^{1-x} xy \, dx \, dy = \frac{1}{24}$.

OR

8. Give an example of a function of two variables x and y such that

$$\frac{\partial^2 f}{\partial x \partial y} \neq \frac{\partial^2 f}{\partial y \partial x}$$

Unit—V

9. Give an example of two sequences $\{a_n\}$ and $\{b_n\}$ such that the sequence $\{a_n\}$ and $\{b_n\}$ are divergent and diverges to $+\infty$ and $-\infty$ respectively but $\{a_n + b_n\}$ is convergent.

OR

10. Show that the sequence $\left\{\frac{n^2+5}{3n^2+7}\right\}$ converges to $\frac{1}{3}$.

(SECTION : C-DESCRIPTIVE)

Answer the following :

Unit—I

- 1. (a) If the area of a circle increases at a uniform rate, show that the rate of increase of the perimeter varies inversely as the radius.
 - (b) Using ε - δ definition of continuity, prove that f(x) = 2x + 5 is continuous at x = 2.

OR

- **2.** (a) Prove that a function which is derivable at a point is necessarily continuous at the point, but the converse is not true.
 - (b) Differentiate $\cos^{-1}(2x^2 1)$ with respect to $\sin^{-1}\sqrt{1 x^2}$.

/127

10×5=50

5

5

5

6

4

UNIT-II

3. (a) Verify Lagrange's mean value theorem for $f(x) = x^2 + 2x + 3$ on [4, 6].

(b) Expand sin x by Maclaurin's theorem.

OR

- 4. (a) State Lagrange's mean value theorem and discuss geometrical interpretation of Lagrange's mean value theorem. 2+4=6
 - (b) Expand e^x in the power of (x+3).

UNIT-III

5. Evaluate $\int_{2}^{4} e^{-x} dx$ as a limit of sum.

OR

6. Obtain the reduction formula for $\int x^m e^x dx$ and use the formula to evaluate $\int_0^1 x^m e^x dx.$

UNIT-IV

7. (a) Prove that the function defined by

$$f(x) = \begin{cases} x & , x \le 1 \\ 2 - x & , 1 < x \le 2 \\ -2 + 3x - x^2 & , x > 2 \end{cases}$$

is continuous at x = 1 and x = 2.

(b) State and prove Euler's theorem on a homogeneous function for two

OR

8. (a) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function of two variables given as $f(x, y) = \frac{x^2}{x^2 + y}$. Examine the limit of f(x, y) as $(x, y) \rightarrow (0, 0)$.

/127

| Contd.

10

5

5

5

4

10

3

7

(b) If $u = \log \sqrt{x^2 + y^2 + z^2}$, then prove that

$$(x^{2} + y^{2} + z^{2})\left(\frac{\partial^{2}u}{\partial x^{2}} + \frac{\partial^{2}u}{\partial y^{2}} + \frac{\partial^{2}u}{\partial z^{2}}\right) = 1$$
5

Unit—V

9.	(a)	Prove that every convergent sequence is bounded.	5
		Prove that a sequence cannot converge more than one limit.	5
		OR	
10.		Prove that every convergent sequence is a Cauchy sequence.	5
	(b)	Test the convergence or divergence of the series whose <i>n</i> th term is $\{(n^3 + 1)^{1/3} - n\}.$	5

MATH/I/EC/01

Student's Copy

2023

(CBCS)

(1st Semester)

MATHEMATICS

FIRST PAPER

(Calculus)

Full Marks : 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick (\checkmark) the correct answer in the brackets provided :

1×10=10

1. The derivative of $\sin x$ with respect to $\cos x$ is

- $(a) \tan x$ ()
- $(b) -\cot x \quad ()$
- (c) $\tan x$ ()

(d) $\cot x$ ()

/127

2. The nth derivative of $5x^n$ is

- (a) $5n(n-1)^{x^{n-1}}$ ()
- (b) (5n)! ()
- (c) 5n! ()
- (d) 5x(n-1)! ()

3. The function $f(x) = \log x$ can be expanded in power of (x-1) by using

- (a) Maclaurin's theorem ()
- (b) Taylor's theorem ()
- (c) Leibnitz's theorem ()
- (d) None of the above ()
- 4. The value of c of the mean value theorem for the function $f(x) = x^2$ in the interval [1, 2] is
 - (a) 0 ()
 - (b) 1 ()
 - (c) 0·5 ()
 - (d) 1.5 ()

5. If for an even function f(x), $\int_0^1 f(x) dx = 4$, then the value of $\int_{-1}^1 f(x) dx$ is

- (a) 4 ()
- (b) -4 (
- (c) 8 (
- (d) -8 ()

6. The value of the integral $\int_0^{\pi/4} \tan^5 \theta \, d\theta$ is

(a)
$$\frac{1}{4}\log 2$$
 ()
(b) $\frac{1}{4}(2\log 2 - 1)$ ()
(c) $\frac{1}{4}(\log 2 - 1)$ ()
(d) $\frac{1}{4}(\log 3 - 1)$ ()

7. Let $f(x, y) = \frac{x+y}{x^2+y}$, when $x^2 + y \neq 0$. Then $\lim f(x, y)$ as $(x, y) \rightarrow (1, -1)$ along the line x = 1 is

in a star

- (a) 0 ()
- (b) 1 . ()
- (c) Does not exist ()
- (d) None of the above ()

8. If
$$f(x, y) = ax^2 + 2hxy + by^2$$
, then $x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y}$ is

- (a) $2(ax^2 + 2hxy + by^2)$ () (b) $ax^2 + 2hxy + by^2$ ()
- (c) $\frac{1}{2}(ax^2 + 2hxy + by^2)$ ()
- (d) None of the above ()

9. If in a sequence $\langle x_n \rangle$, $\lim_{n \to 0} x_n$ is finite, the sequence is

- (a) convergent (
- (b) divergent ()
- (c) oscillatory ()
- (d) Cauchy ()

/127

10. Every Cauchy sequence must be

- (a) monotonic ()
- (b) bounded above only ()
- (c) bounded below only ()
- (d) bounded ()

(SECTION : B-SHORT ANSWERS)

(Marks: 15)

Answer the following questions :

Unit—I

1. Use L' Hospital rule to evaluate

$$\lim_{x \to 0} \frac{e^x + \sin x - 1}{\log (1 + x)}$$

OR

2. Find y_n , if $y = x^2 e^{\alpha x}$.

Unit—II

4

3. Expand e^x in an infinite series in powers of x. OR

4. Verify Rolle's theorem for $f(x) = x\sqrt{a^2 - x^2}$ on [0, a].

- UNIT-III **5.** Find the reduction formula for $\int e^{ax} x^n dx$.
 - OR
- 6. Find $\int \sec^6 x \, dx$.

3×5=15

 $\int_{1}^{1} \int_{0}^{1-x} xy \, dx \, dy = \frac{1}{24}.$ **OR**

Give an example of a function of two variables x and y such that $\partial^2 f = \partial^2 f$

$$\frac{\partial^2 f}{\partial x \partial y} \neq \frac{\partial^2 f}{\partial y \partial x}$$

Unit—V

9. Give an example of two sequences $\{a_n\}$ and $\{b_n\}$ such that the sequence $\{a_n\}$ and $\{b_n\}$ are divergent and diverges to $+\infty$ and $-\infty$ respectively but $\{a_n + b_n\}$ is convergent.

OR

10. Show that the sequence
$$\left\{\frac{n^2+5}{3n^2+7}\right\}$$
 converges to $\frac{1}{3}$.

(SECTION : C-DESCRIPTIVE)

10×5=50

Answer the following :

Unit—I

- (a) If the area of a circle increases at a uniform rate, show that the rate of increase of the perimeter varies inversely as the radius.
 - (b) Using ε-δ definition of continuity, prove that f (x) = 2x + 5 is continuous at x = 2.

OR

- (a) Prove that a function which is derivable at a point is necessarily continuous at the point, but the converse is not true.
 - (b) Differentiate $\cos^{-1}(2x^2 1)$ with respect to $\sin^{-1}\sqrt{1 x^2}$. 4

/127

UNIT-II

3. (a) Verify Lagrange's mean value theorem for $f(x) = x^2 + 2x + 3$ on [4, 6].

(b) Expand sin x by Maclaurin's theorem.

OR

- 4. (a) State Lagrange's mean value theorem and discuss geometrical interpretation of Lagrange's mean value theorem. 2+4=6
 - (b) Expand e^x in the power of (x+3).

Unit—III

5. Evaluate $\int_{2}^{4} e^{-x} dx$ as a limit of sum.

OR

6. Obtain the reduction formula for $\int x^m e^x dx$ and use the formula to evaluate $\int_0^1 x^m e^x dx$.

Unit—IV

7. (a) Prove that the function defined by

$$f(x) = \begin{cases} x & , x \le 1 \\ 2 - x & , 1 < x \le 2 \\ -2 + 3x - x^2 & , x > 2 \end{cases}$$

is continuous at x = 1 and x = 2.

(b) State and prove Euler's theorem on a homogeneous function for two variables.

OR

8. (a) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function of two variables given as $f(x, y) = \frac{x^2}{x^2 + y}$. Examine the limit of f(x, y) as $(x, y) \to (0, 0)$.

/127

| Contd.

3

7

4

10

10

5

5

5

(b) If $u = \log \sqrt{x^2 + y^2 + z^2}$, then prove that

$$(x^{2} + y^{2} + z^{2})\left(\frac{\partial^{2}u}{\partial x^{2}} + \frac{\partial^{2}u}{\partial y^{2}} + \frac{\partial^{2}u}{\partial z^{2}}\right) = 1$$
5

UNIT-V

9. (a) Prove that every convergent sequence is bounded.
(b) Prove that a sequence cannot converge more than one limit.
0R
10. (a) Prove that every convergent sequence is a Cauchy sequence.
(b) Test the convergence or divergence of the series whose *n*th term is {(n³ + 1)^{1/3} - n}.

MATH/III/EC/03

Student's Copy

2023

(CBCS)

(3rd Semester)

MATHEMATICS

THIRD PAPER

(Differential Equations)

Full Marks : 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(Marks: 10)

Tick (✓) the correct answer in the brackets provided : 1×10=10

- 1. The differential equation of all circles in the xy-plane which have their centre at the origin is
 - $(a) \quad \frac{dy}{dx} \frac{x}{y} = 0 \qquad (\qquad)$
 - $(b) \quad \frac{dy}{dx} + xy = 0 \qquad ()$
 - $(c) \quad \frac{dy}{dx} + \frac{x}{y} = 0 \qquad ()$
 - $(d) \quad \frac{dy}{dx} \frac{y}{x} = 0 \qquad (\qquad)$

/128

2. Which among the following differential equations is not homogeneous?

(a)
$$(x^2 + xy)\frac{dy}{dx} = 1$$
 (b) $\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}$ ()

(c)
$$\frac{dy}{dx} = \frac{x^2 y}{x^3 + y^3}$$
 () (d) $\frac{dy}{dx} = \frac{\sqrt{x^2 - y^2} + y}{x}$ ()

3. The general solution of the differential equation

$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = 0$$

is

- (a) $y = (A + B)e^{-2x}$ () (b) $y = Ax + Be^{-2x}$ () (c) $y = (A + Bx)e^{-2x}$ () (d) None of the above ()
- 4. The particular integral (PI) of the differential equation $(D^4 D^2)y = e^{2x}$, where $D = \frac{d}{dx}$ is
 - (a) $\frac{e^{2x}}{2}$ () (b) $-\frac{e^{2x}}{4}$ () (c) $\frac{e^{2x}}{12}$ () (d) $-\frac{e^{2x}}{12}$ ()
- 5. Clairaut's equation of the form y = px + f(p) has solution, if
 - (a) p = x () (b) p = constant () (c) $p = \frac{dy}{dx}$ () (d) p = y ()

/128

- The orthogonal trajectories of the family of curves given by xdy 2ydx = 0 are
 - (a) $x^2 + 2y^2 = c$ () (b) $2x^2 + y^2 = c$ () (c) $2x^2 + 2y^2 = c$ () (d) $x^2 + y^2 = c$ ()
- 7. The condition for exactness for the equation

$$(1+x^2)\frac{d^2y}{dx^2} + 3x\frac{dy}{dx} + y = 0$$

is

- (a) $P_2 P'_1 + P''_0 = 0$ (b) $P_2 + P'_1 + P''_0 = 0$ (c) (c) $P_2 + P'_1 - P''_0 = 0$ (c) (d) $P_2 - P'_1 - P''_0 = 0$ (c)
- 8. Sometimes a differential equation is transformed to an integrable form by changing the
 - (a) dependent variable
 (b) independent variable
 (c) constant
 (c) const
- 9. The required PDE by eliminating a and b from the equation z = (x + a)(y + b) is
 - (a) z = p (b) z = q (c)
 - (c) z = pq () (d) $z = \frac{p}{q}$ ()
- 10. The Lagrange's auxiliary equations of the equation $y^2p xyq = x(z 2y)$ are given by
 - (a) $\frac{dx}{-xy} = \frac{dy}{y^2} = \frac{dz}{x(z-2y)}$ (b) $\frac{dx}{y^2} = \frac{dy}{-xy} = \frac{dz}{x(z-2y)}$ (c) $\frac{dz}{y^2} = \frac{dy}{-xy} = \frac{dz}{x(z-2y)}$ (c) $\frac{dz}{y^2} = \frac{dy}{-xy} = \frac{dz}{x(z-2y)}$ (c) $\frac{dz}{y^2} = \frac{dz}{-xy} = \frac{dy}{x(z-2y)}$ (c) $\frac{dz}{y^2} = \frac{dz}{-xy} = \frac{dz}{x(z-2y)}$ (c) $\frac{dz}{y^2} = \frac{dz}{x(z-2y)}$

/128

(SECTION : B-SHORT ANSWERS)

(Marks: 15)

Answer the following :

Unit—I

1. Solve $\frac{dy}{dx} = \sin(x+y)$.

OR

2. Check the exactness of the differential equation

$$\left\{y\left(1+\frac{1}{x}\right)+\cos y\right\}dx+(x+\log x-x\sin x)dy=0$$

and solve it.

- Unit—II
- **3.** Solve $(D^2 + 5 2D)y = 10 \sin x$.
 - OR

4. Find the particular integral of $(D^3 + D^2 - 6D)y = 1 + x^2$, where $D = \frac{dy}{dx}$.

Unit—III

5. Find the general and singular solutions of $p^3 + y^2 = 1$.

OR

6. Solve
$$p + \frac{1}{p} = \frac{10}{3}$$
.

/128

3×5≈18

7. Solve $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = 2\log x$. OR

8. Solve
$$(yz + xyz)dx + (zx + xyz)dy + (xy + xyz)dz = 0$$
.

UNIT-V

- 9. Find the general solution of xzp + yzq = xy. OR
- 10. Find the integral of $p^3 + q^3 = 27z$.

(SECTION : C-DESCRIPTIVE)

(Marks: 50)

Answer the following :

UNIT-I

- 1. (a) Find the differential equation of the family of curves $y = Ae^{3x} + Be^{5x}$ for different values of A and B. 5
 - (b) Solve the differential equation

$$(x+y)^2 \frac{dy}{dx} = a^2$$

OR

2. (a) Solve :

$$(1-x^2)\frac{dy}{dx} - xy = 1$$

(b) Reduce the equation $(3x^2 + 4xy) dx + (2x^2 + 2y) dy = 0$ to exact form and solve it.

5

[Contd.

5

5

10×5=50

Unit—II

3. Solve the following :	
(a) $(D^2 - 2D + 1)y = x \sin x$	
(b) $(D^3 + 3D^2 + 2D)y = x^2$	

OR

4. (a) Solve
$$(D^2 - 2D + 4)y = e^x \cos x$$
.
(b) Solve the differential equation
 $(D^2 + 4)y = x \sin x$

UNIT-III

5. (a) Solve the differential equation $p^3 - p(y+3) + x = 0$

where $p = \frac{dy}{dx}$.

(b) Find the orthogonal trajectories of the family of curves $\frac{x^2}{a^2} + \frac{y^2}{b^2 + 1} = 1$

 λ being parameter.

OR

- **6.** (a) Reduce the differential equation (px y)(x yp) = 2p to Clairaut's form by substituting $x^2 = u$, $y^2 = v$ and find its general and singular solutions.
 - (b) Solve $y = x + p^3$, where $p = \frac{dy}{dx}$.
 - UNIT-IV
- 7. (a) Solve the equation

$$x^{3}\frac{d^{3}y}{dx^{3}} + 2x^{2}\frac{d^{2}y}{dx^{2}} + 2y = 10\left(x + \frac{1}{x}\right)$$

/128

[Contd.

5

5

5

5

5

5

5

5+_{5≈10}

(b) Show that the equation

 $x\frac{d^{3}y}{dx^{3}} + (x^{2} - 3)\frac{d^{2}y}{dx^{2}} + 4x\frac{dy}{dx} + 2y = 0$

is exact and solve it.

OR

8. (a) Check the condition of integrability and solve the equation $yz^{2}(x^{2} - yz)dx + zx^{2}(y^{2} - xz)dy + xy^{2}(z^{2} - xy)dz = 0$

(b) Transform the equation

$$x\frac{d^2y}{dx^2} - \frac{dy}{dx} + 4x^3y = x^5$$

and find the solution.

Unit—V

- 9. (a) Use Lagrange's auxiliary equations to solve the equation $(x^{3} + 3xy^{2})p + (y^{3} + 3x^{2}y)q = 2(x^{2} + y^{2})z$
 - (b) Apply Charpit's method to find the complete integral of the equation px + qy = pq.

OR

10. (a) Find the general solution of the equation

$$(y^2 + z^2 - x^2)p - 2xyq + 2zx = 0$$

(b) Solve $\cos(x+y)p + \sin(x+y)q = z$.

* * *

7

5

5

5

5

5

5

5

|III/EC/03

Student's Copy

2023

(CBCS)

(3rd Semester)

MATHEMATICS

THIRD PAPER

(Differential Equations)

Full Marks: 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION: A-OBJECTIVE)

(Marks : 10)

Tick (\checkmark) the correct answer in the brackets provided :

1×10=10

1. The differential equation of all circles in the xy-plane which have their centre at the origin is

(a)
$$\frac{dy}{dx} - \frac{x}{y} = 0$$
 ()
(b)
$$\frac{dy}{dx} + xy = 0$$
 ()
(c)
$$\frac{dy}{dx} + \frac{x}{y} = 0$$
 ()
(d)
$$\frac{dy}{dx} - \frac{y}{x} = 0$$
 ()

/128

2. Which among the following differential equations is not homogeneous?

(a)
$$(x^2 + xy)\frac{dy}{dx} = 1$$
 () (b) $\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}$ ()
(c) $\frac{dy}{dx} = \frac{x^2y}{x^3 + y^3}$ () (d) $\frac{dy}{dx} = \frac{\sqrt{x^2 - y^2} + y}{x}$ ()
3. The general solution of the differential equation
 $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = 0$
is
(a) $y = (A + B)e^{-2x}$ () (b) $y = Ax + Be^{-2x}$ ()
(c) $y = (A + Bx)e^{-2x}$ () (d) None of the above ()
4. The particular integral (PI) of the differential equation of the above ()

- differential equation $(D^4 D^2)y = e^{2x}$, where $D = \frac{d}{dx}$ is
 - (a) $\frac{e^{2x}}{2}$ () (b) $-\frac{e^{2x}}{4}$ () (c) $\frac{e^{2x}}{12}$ () $(d) - \frac{e^{2x}}{12}$ ()
- **5.** Clairaut's equation of the form y = px + f(p) has solution, if
 - (a) p = x() (b) p = constant () $(c) \quad p = \frac{dy}{dx} \qquad ()$ $(d) \quad p = y \qquad ($)

/128

З.

Contd.

- 6. The orthogonal trajectories of the family of curves given by xdy 2ydx = 0 are
 - (a) $x^2 + 2y^2 = c$ () (b) $2x^2 + y^2 = c$ () (c) $2x^2 + 2y^2 = c$ () (d) $x^2 + y^2 = c$ ()

7. The condition for exactness for the equation

$$(1+x^2)\frac{d^2y}{dx^2} + 3x\frac{dy}{dx} + y = 0$$

is

- (a) $P_2 P'_1 + P''_0 = 0$ () (b) $P_2 + P'_1 + P''_0 = 0$ () (c) $P_2 + P'_1 - P''_0 = 0$ () (d) $P_2 - P'_1 - P''_0 = 0$ ()
- 8. Sometimes a differential equation is transformed to an integrable form by changing the

(a)	dependent variable		()	(b)	independent variable	•	()
(c)	constant ()			(d)	coefficient ()		

- **9.** The required PDE by eliminating a and b from the equation z = (x + a)(y + b) is
 - (a) z = p (b) z = q (c) (c) z = pq (c) (d) $z = \frac{p}{q}$ (c)
- 10. The Lagrange's auxiliary equations of the equation $y^2 p xyq = x(z 2y)$ are given by

(a)
$$\frac{dx}{-xy} = \frac{dy}{y^2} = \frac{dz}{x(z-2y)}$$
 (b) $\frac{dx}{y^2} = \frac{dy}{-xy} = \frac{dz}{x(z-2y)}$ (c) $\frac{dz}{y^2} = \frac{dy}{-xy} = \frac{dx}{x(z-2y)}$ (c) $\frac{dz}{y^2} = \frac{dy}{-xy} = \frac{dz}{x(z-2y)}$ (c) $\frac{dz}{y^2} = \frac{dz}{-xy} = \frac{dy}{x(z-2y)}$ (c) $\frac{dz}{y^2} = \frac{dz}{-xy} = \frac{dz}{x(z-2y)}$ (c) $\frac{dz}{y^2} = \frac{dz}{x(z-2y)}$ (c) $\frac{dz}{y^2} = \frac{dz}{x(z-2y)}$ (c) $\frac{dz}{y^2} = \frac{dz}{x(z-2y)}$ (c) $\frac{dz}{y^2} = \frac{dz}{x^2} = \frac{dz}{x(z-2y)}$ (c) $\frac{dz}{x(z-2y)}$ (c) $\frac{dz}{x(z-2y)}$ (c) $\frac{dz}{y^2} = \frac{dz}{x(z-2y)}$ (c) $\frac{dz}{x(z-2y)}$ (c)

/128

(SECTION : B-SHORT ANSWERS)

(Marks : 15)

Answer the following :

UNIT-I

1. Solve $\frac{dy}{dx} = \sin(x+y)$.

OR

2. Check the exactness of the differential equation

$$\left\{y\left(1+\frac{1}{x}\right)+\cos y\right\}dx+\left(x+\log x-x\sin x\right)dy=0$$

and solve it.

Unit—II

3. Solve
$$(D^2 + 5 - 2D)y = 10 \sin x$$
.

OR

4. Find the particular integral of $(D^3 + D^2 - 6D)y = 1 + x^2$, where $D = \frac{dy}{dx}$.

UNIT-III

5. Find the general and singular solutions of $p^3 + y^2 = 1$. OR

6. Solve $p + \frac{1}{p} = \frac{10}{3}$.

/128

4

3×5=15