2022

(CBCS)

(5th Semester)

PHYSICS

FIFTH PAPER

(Mathematical Physics—II)

Full Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A—OBJECTIVE)

(*Marks*: 10)

			,	•			
Tick	(✓)	the correct as	nswer in the bracke	ets provided :			1×10=10
1.	The	function $f(z)$	$ z ^2$ with $z \times iy$	is			
	(a)	differentiable	for all values of x	and y ()		
	(b)	differentiable	for positive values	of x and y	()	
	(c)	differentiable	only at $x = 0$ and $y = 0$	y 0 ()		
	(d)	differentiable	only at $x = 1$ and y	1 ()		
2.	The	value of the	integral $C^{e^{1/z}}dz$,	where C is the	circle	e z 1 is	
	(a)	0 ()	(b) 2 i	()	
	(c)	i ()	(d) 2	()	

1 [Contd. /187

3.	The solution of the differential equation $y = n^2y = 0$; where $y = \frac{dy}{dx}$ is
	(a) Ae^{nx} Be^{nx} ()
	(b) $Ae^{nx} Be^{nx}$ ()
	(c) Ae^{nx} Be^{nx} ()
	(d) Ae^{nx} Be^{nx} ()
4.	The displacement function for a string of length l fixed at both ends with zero initial velocity is given by
	$u(x,t)$ $n \le C_n \cos \frac{n \cdot ct}{l}$ $D_n \sin \frac{n \cdot ct}{l} \sin \frac{n}{l} x$
	then
	(a) $C_n = 0$ () (b) $C_n = D_n = 0$ () (c) $C_n = D_n = 0$ () (d) $D_n = 0$ ()
	(c) $C_n D_n 0$ () (d) $D_n 0$ ()
5.	For integral values of n , $J_n(x)$ is
	(a) $(1)^n J_n(x)$ (b) $J_n(x)$ (c)
	(c) 0 (d) $(1)^n J_n(x)$ ()
6.	The value of $\frac{1}{1}(2x + 1)P_3(x)dx$ is
	(a) 1 (b) 1 (c) 2 (a) 1 (d) 0 (e) 0
	(a) 1 (b) 1 () (c) 2 () (d) 0 ()
7.	The Fourier transform of $\frac{df}{dt}$, i.e., FT $\frac{df}{dt}$ is
	(a) $\frac{1}{\sqrt{2}}$ $f(t)e^{-i-t}dt$ ()
	(b) $\sqrt{\frac{1}{2}} \qquad f(t)e^{i-t}dt \qquad \qquad ()$
	(c) $\frac{i}{\sqrt{2}}$ $f(t)e^{-i-t}dt$ ()
	(d) $\frac{1}{i\sqrt{2}}$ $f(t)e^{it}dt$ ()

8. If g() be the Fourier transform of f(t), then FT[tf(t)] is

- (a) $\frac{dg}{d}$ ()
- (b) $\frac{dg}{d}$ ()
- (c) $i\frac{dg}{d}$ ()
- (d) $i\frac{dg}{d}$ ()

9. Laplace transform of $t^{\frac{1}{2}}$ is

- (a) $\frac{\sqrt{}}{s}$
- (b) $\sqrt{\frac{\ }{s}}$ ()
- (c) $\frac{s}{\sqrt{}}$
- $(d) \frac{1}{\sqrt{s}} \qquad ()$

10. The inverse Laplace transform of $\frac{1}{s^2(s^2)}$ is

- (a) $\frac{1}{3}$ { $t \sin t$ } (
- (b) $\frac{1}{3} \{ \sin t \quad t \}$
- (c) $\frac{1}{3} \{ \sinh t t \}$
- $(d) \quad \frac{1}{3} \{ \quad t \quad \sinh \quad t \} \qquad ()$

(SECTION : B—SHORT ANSWER)

(*Marks* : 15)

Answer the following:

 $3 \times 5 = 15$

Unit—I

1. Evaluate $C = \frac{1}{\sin 2z} dz$, where C is the circle |z| = 1.

OR

2. Compute the residue of $\frac{\sin z}{1 + z^4}$ at z = i.

UNIT-II

3. Obtain an expression for the displacement function u(x, t) for a string of length l fixed at both ends and released with zero initial velocity.

OR

4. Find the regular singular points of the differential equation $(1 ext{ } x^2)y ext{ } 2xy ext{ } l(l ext{ } 1)y ext{ } 0.$

UNIT-III

5. Show that $(n \ 1)P_{n \ 1}(x) \ xP_{n \ 1}(x) \ P_{n}(x)$.

OR

6. Using the generating function for Hermite polynomials, show that

$$H_n(x)$$
 $(1)^n e^{x^2} \frac{d^n}{dx^n} (e^{-x^2})$

7. For the square wave function given by

$$y$$
 $a; t$ 0 to t $\frac{T}{2}$ $a; t$ $\frac{T}{2}$ to t T

Show that the Fourier coefficient b_n 0 for all values of n.

OR

8. Show that the Fourier transform of delta function (t) is $\frac{1}{\sqrt{2}}$.

UNIT-V

9. Find Laplace transform of a square wave function

$$F(t) = \begin{cases} a & \text{for } 0 & t & \frac{T}{2} \\ 0 & \text{for } \frac{T}{2} & t & T \end{cases}; F(t - T) F(t)$$

OR

10. If f(s) $\mathcal{L}[F(t)]$, then show that $\mathcal{L}\left(\frac{F(t)}{t}\right) = \int_{S} f(s) ds$.

(SECTION : C—DESCRIPTIVE)

(*Marks*: 50)

Answer the following:

10×5=50

UNIT-I

- **1.** (a) State and prove the necessary condition for analyticity of a complex function. 1+3=4
 - (b) Find the Laurent's series expansion for $f(z) = \frac{z^2 1}{(z 2)(z 3)}$ valid in the region 2 = |z| = 3.
 - (c) Use residue theorem to evaluate the integral $C = \frac{4 + 3z}{z(z + 1)(z + 2)} dz$, where C is the circle $|z| = \frac{3}{2}$.

OR

2. (a) State and prove Cauchy's residue theorem.

1+6=7

3

(b) Use Cauchy's integral formula to evaluate $C = \frac{2}{z(2-z)} dz$, where C is the circle |z| = 1.

/187 5 [Contd.

UNIT—II

- **3.** (a) Find the power series solution of $(1 x^2)y 2xy 2y 0$ about x 0.
 - (b) Use the method of separation of variables to solve the partial differential equation of heat flow in one dimension $\frac{u}{t} h^2 \frac{^2u}{x^2}$ with initial condition $u(x,0) \cos 2x$.
 - (c) Find the solution of indicial equation for the differential equation

$$y = \frac{1}{2x}y = \frac{(1-x^2)}{2x^2}y = 0$$

OR

- **4.** (a) Find the power series solutions of the differential equation $\frac{d^2y}{dx^2} = \frac{2x}{1-x^2} \frac{dy}{dx} = \frac{2}{1-x^2} y = 0, \text{ about } x = 1.$
 - (b) Write down the general solution of the partial differential equation $\frac{^2u}{t^2} c^2 \frac{^2u}{x^2}$, hence show that the expression for subsequent displacement for a string of length fixed at both ends and released at rest with initial deflection $u(x,0) = \sin x$ is $u(x,t) = \cos t \sin x$. (Given $c^2 = 1$)

UNIT—III

- **5.** (a) Prove the Rodrigue's formula $P_n(x) = \frac{1}{2^n(n!)} \frac{d^n}{dx^n} (x^2 1)^n$ for Legendre's polynomials and hence show that $\int_{1}^{1} P_0(x) dx = 2$; (n 0). 5+2=7
 - (b) Prove that $\frac{d}{dx}[J_0(x)] = J_1(x)$; where $J_n(x)$ is the Bessel's function.

/187

4

- **6.** (a) Starting from the expression $J_n(x) = \frac{(1)^r}{r! (n-r-1)} \frac{x}{2}$ for Bessel's function, prove the following recursion relations: 3+3=6 (i) $2J_n(x) = J_{n-1}(x) = J_{n-1}(x)$ (ii) $\frac{d}{dx}[x^nJ_n(x)] = x^nJ_{n-1}(x)$
 - (b) Starting from the Rodrigue's formula $H_n(x)$ (1)ⁿ $e^{x^2} \frac{d^n}{dx^n} (e^{x^2})$ for Hermite polynomials, find the values of $H_3(x)$ and $H_4(x)$.

UNIT-IV

7. (a) Obtain the Fourier series for the function

 $f(x) = \begin{cases} \sin x & ; & 0 & x \\ \sin x & ; & x & 2 \end{cases}$

(b) Use the method of Fourier transform to solve $\frac{u(x,t)}{t} = \frac{^2u(x,t)}{x^2}$; x = 0, t = 0 subject to the boundary conditions—(i) u(0,t) = 0, (ii) $u(x,0) = \frac{1}{0}$; x = 1 and (iii) u(x,t) is bounded.

OR

8. (a) Obtain the Fourier integral of the function

$$f(x) = \begin{array}{cccc} 0 & ; & x & 0 \\ \frac{1}{2} & ; & x & 0 \\ e^{x} & ; & x & 0 \end{array}$$

and hence show that $f(0) = \frac{1}{2}$.

- (b) Find the infinite Fourier transform of the function f(x) $\begin{array}{c}
 1, |x| & 1 \\
 0, |x| & 1
 \end{array}$ and hence show that $0 \frac{\sin x}{x} dx = \frac{1}{2}$.
- (c) Find the inverse cosine transform of e^{-n} .

3

Unit-V

- **9.** (a) Use Laplace transform to solve the integral equation $F(t) \sin t = \frac{t}{0} F(t x) \cos x \, dx$ for F(t), if F(0) = 0.
 - (b) Using the method of partial fractions, find the inverse Laplace transform of $\frac{1}{(s-1)(s^2-1)}$.
 - (c) Find the Laplace transform of F(t) $t^2e^t \sin 4t$.

OR

- **10.** (a) Using Laplace transform, show that $x = e^t \cos t$ is the solution of the differential equation $\frac{d^2x}{dt^2} = 2\frac{dx}{dt} = 2x = 0$; given that $x_0 = (x_0)_{t=0} = 1$.
 - (b) Using convolution theorem, find the inverse Laplace transform of $\frac{s^2}{(s^2-a^2)^2}$
 - (c) Find the Laplace transform of $F(t) \cos^3 t$.

* * *

3