2022

(CBCS)

(5th Semester)

MATHEMATICS

EIGHTH (B) PAPER

(Probability Theory)

Full Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A—OBJECTIVE)

(*Marks*: 10)

Tick $\ensuremath{\square}$ the correct answer in the boxes provided :

 $1 \times 10 = 10$

- 1. The chance that a leap year selected at random will contain 53 Sundays is
 - (a) $\frac{3}{7}$
 - (b) $\frac{2}{7}$
 - (c) $\frac{1}{7}$
 - (d) $\frac{5}{7}$

2.	If $P(A) = 0.25$, $P(B) = 0.15$, $P(A = B) = 0.30$, then $P(A = B)$ is
	(a) $\frac{2}{3}$
	(b) 0·10 □
	(c) 0·30
	(d) None of the above \Box
3.	For the binomial distribution
	(a) mean < variance
	(b) variance < mean □
	(c) mean = variance \Box
	(d) None of the above \Box
4.	For the probability mass function $f(x)$ $cx^2(1 x)$, $0 x 1$, the value of the constant c is
	(a) 5 \Box
	(b) 8
	(c) 12 \Box
	(d) 0
5.	The random variables X and Y with joint probability distribution $f(x, y)$ and marginal distribution $g(x)$ and $h(y)$ respectively are independent if and only if
	(a) $f(x, y) g(x) h(y)$
	(b) $f(x, y) = g(x) / h(y)$
	(c) $f(x, y) g(x) h(y)$
	(d) $f(x, y) g(x)h(y)$

6.	If v	$\operatorname{var}(X)$ 2, then $\operatorname{var}(3X + 4)$ is							
	(a)	18							
	(b)	22							
	(c)	32							
	(d)	10							
7.	For	two rai	ndom variables X and Y , var $(X \mid Y)$ is equal to						
	(a)	var (X)	var(Y)						
	(b)	var(X)	var(Y)						
	(c)	var(X)	var(Y) 2cov(X, Y)						
	(d)	var(X)	var(Y) 2cov(X, Y)						
8.			ed disc are thrown. If X is the sum of the numbers showing up, $7 \mid 3$ is						
	(a)	$\frac{7}{3}$							
	(b)	$\frac{5}{3}$							
	(c)	$\frac{1}{3}$							
	(d)	None o	f the above \Box						

9.	The	me	an a	and va	riance	e of the geometric distribution are		
	(a)	$\frac{p}{q}$,	$\frac{q}{p^2}$]			
	(b)	$\frac{p}{q}$,	$\frac{p^2}{q}$]			
	(c)	$\frac{q}{p}$,	$\frac{q}{p^2}$]			
	(d)	$\frac{q}{p}$,	$\frac{p^2}{q}$]			
10.	Let X and Y be independent random variables with Z X Y . Let $M_X(t)$, $M_Y(t)$ and $M_Z(t)$ be the moment generating functions of X , Y and Z respectively, then							
	(a)	M_Z	(t)	$M_X(t)$	$M_{Y}(t)$			
	(b)	M_Z	(t)	$M_X(t)$	M_{Y} (\Box		
	(c)	M_Z	(t)	$M_X(t)$	M_Y ((t) \Box		
	(d)	M_Z	(t)	$M_X(t)$	/ M _Y ((t) \Box		
(SECTION: B—SHORT ANSWER) (Marks: 15)								
						(11101100 . 10)		

Answer the following :

 $3 \times 5 = 15$

UNIT—I

1. A bag contains 7 red, 12 white and 4 blue balls. What is the probability that three balls drawn at random are one of each colour?

OR

2. If A, B, C are mutually independent events, then show that A B and C are also independent.

UNIT-II

3. Determine the binomial distribution for which the mean is 4 and the variance is 3.

OR

4. If X is uniformly distributed over the interval [a, b], then prove that $E(X) = \frac{a + b}{2}$.

UNIT-III

5. If X and Y are random variables having joint density function

$$f(x, y)$$
 $\frac{1}{8}$ (6 x y), 0 x 2, 2 y 4 0 , otherwise

find $P[X \ 1 \ Y \ 3]$.

OR

6. The joint density function of X, Y is given as

$$f(x, y) = \begin{cases} 2, & 0 & x & y & 1 \\ 0, & \text{otherwise} \end{cases}$$

Prove that *X* and *Y* are not independent random variables.

7. For random variables X and Y, prove that $E(X \mid Y) \mid E(X) \mid E(Y)$, provided all the expectation exist.

OR

8. If X is a random variable, then $V(aX \ b) \ a^2V(X)$, where a and b are constants.

9. Prove that the moment generating function of gamma distribution is

$$M_X(t)$$
 (1 t) n , |t| 1

OR

10. If (X, Y) are independent Poisson variate such that P(X = 1) P(X = 2) and P(Y = 2) P(Y = 3), then find the variates of (X = 2Y).

(SECTION : C—DESCRIPTIVE)

(*Marks*: 50)

Answer the following:

 $10 \times 5 = 50$

UNIT—I

- **1.** (a) A speaks the truth in 60% and B in 75% of the cases. In what percentage of the cases are they likely to contradict each other in starting the same fact?
 - (b) Prove that for any two events A and B,

$$P(A \mid B) \quad P(A) \quad P(A \mid B) \quad P(A) \quad P(B)$$

5

5

OR

2. State and prove Bayes theorem.

10

UNIT—II

3. For the binomial distribution $(q p)^n$, prove that

$$\frac{d}{dp}$$

where is the rth central moment. Hence obtain $_2$, $_3$ and $_4$. 10

OR

- **4.** (a) Ten coins are thrown simultaneously. Find the probability of getting at least seven heads.
 - (b) A random variable X has the probability density function as follows:

$$f(x, y) = \frac{1}{4}, \quad 2 \quad x \quad 2$$
0, otherwise

Obtain the value of (i) P(X = 1), (ii) P(|X| = 1) and (iii) P[(2X = 3) = 5].

/180

6

[Contd.

UNIT—III

5. (a) For the bivariate probability distribution of X and Y

X Y	1	2	3	4	5	6
0	0	0	1/32	2/32	2/32	2/32
1	1/16	1/16	1/8	1/8	1/8	1/8
2	1/32	1/32	1/64	1/64	0	2/64

find the following:

6

- (i) P(X 1, Y 2)
- (ii) P(X 1)
- (iii) P(Y = 3)
- (b) If

$$f(x, y) = \frac{2}{5}(2x + 3y), \quad 0 \quad x, y = 1$$

0 , otherwise

then verify whether f(x, y) is a joint probability distribution function.

4

OR

6. (a) The joint probability density function of two random variables *X* and *Y* is given by

$$f(x, y) = \frac{9(1 - x - y)}{2(1 - x)^4(1 - y)^4}; 0 = x, y$$

Find the marginal distribution of X and Y and the conditional distribution of Y for X x.

(b) If X and Y are two random variables, determine whether X and Y are independent if

$$f(x, y) = \begin{cases} 8xy, & 0 & y & x & 1 \\ 0, & \text{otherwise} \end{cases}$$

6

UNIT—IV

7. State and prove Chebyshev's inequality.

10

OR

8. Two random variables X and Y have the joint probability distribution function

Find the following:

10

5

5

- (a) Marginal probability density function of X and Y
- (b) V(X) and cov(X, Y)

Unit-V

- **9.** (a) If X is a Poisson variate such that P(X = 2) = 9P(X = 4) = 90P(X = 6), find the value of the parameter .
 - (b) Find the moment generating function of a normal distribution.

OR

10. (a) For a Poisson distribution, prove that

$$r$$
 1 $\frac{d}{d}$ 5

(b) Define geometric distribution for a random variable X. Find its mean and variance.

* * *