MATH/V/CC/07

Student's Copy

2022

(CBCS)

(5th Semester)

MATHEMATICS

SEVENTH PAPER

(Complex Analysis)

Full Marks: 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION: A-OBJECTIVE)

(Marks: 10)

Put a Tick ☑ mark against the correct answer in the boxes provided : 1×10=10

1

1. If \overline{z} is the conjugate of z, then

/178

	(a)	z	$ \overline{z} $			
	(b)	z	$ \overline{z} $			
	(c)	z	$ \overline{z} $			
	(d)	z	$ \overline{z} $			
2.	2. If the principal argument, arg $z / 2$, then z lies					
	(a) the positive imaginary axis					
	(b)	the	positive	real axis		
	(c)	the	negative	imaginary ax	ris	
	(d)	the	negative	real axis		

[Contd.

- **3.** For a function f(z) u *iv* to be analytic, it must satisfy Cauchy-Riemann equation, which is
 - (a) $u_x \quad v_y, u_y \quad v_x \quad \Box$ (b) $u_x \quad v_y, u_y \quad v_x \quad \Box$ (c) $u_x \quad v_y, u_y \quad v_x \quad \Box$ (d) $u_x \quad v_y, u_y \quad v_x \quad \Box$

4. The derivative of $e^{x}(\cos y \ i \sin y)$ with respect to x is

- (a) e^x (b) e^y (c) $e^{x iy}$ \Box
- (d) $e^{x iy}$
- 5. If $\lim_{n} \left| \frac{u_{n-1}}{u_n} \right|$ *l*, then the series u_n is convergent if (a) *l* 0 \Box (b) *l* 0 \Box (c) *l* 1 \Box
 - (d) $l \ 1 \ \Box$

6. If a_n converges and $|v_n v_{n-1}|$ converges, then

- (a) $(a_n \ v_n)$ also converges \Box
- (b) $(a_n v_n)$ also converges
- (c) (a_n / v_n) also converges
- (d) (v_n / a_n) also converges \Box

7. If L is the curve L but traversed in opposite direction, then

- 8. The value of $C \frac{dz}{(z \ z_0)}$, where C is the circle with center at z_0 and radius r is
 - (a) i / 3 🗌
 - (b) i / 2
 - (c) 2 i 🗌
 - (d) $\log r$ \Box

9. A point at which the function f(z) ceases to be analytic is called

- (a) zero
- (b) singularity \Box
- (c) limit point \Box
- (d) residue \Box

10. If f(z) is analytic and uniformly bounded in every domain, then

(a)	f(z) is always zero	
(b)	<i>f</i> (<i>z</i>) is discontinuous	
(c)	f(z) is constant	
(d)	None of the above	

/178

[Contd.

(SECTION : B-SHORT ANSWER)

(Marks: 15)

Answer the following :

 $3 \times 5 = 15$

UNIT—I

1. Show that $\arg(z) \arg(\overline{z}) 2n$.

OR

2. Show that for two complex numbers z_1 and z_2 , $|z_1 \ z_2| \ |z_1| \ |z_2|$.

UNIT—II

3. Find the derivative of $r^n(\cos n \quad i\sin n)$.

OR

4. With suitable example, show that continuity is not a sufficient condition for existence of finite derivative.

UNIT—III

5. Show that every absolutely convergent series is a convergent series.

OR

6. Find the radius of convergence of $2^{\sqrt{n}}z^n$.

- **7.** Give reasons why $_C \frac{e^z}{z^2 9} dz = 0$, where C is a circle C : |z| = 2.
- **8.** Evaluate $\bigcirc_C \frac{1}{z} dz$, where C is a circle C : |z| r.

OR

/178

[Contd.

9. What are the singular points of $f(z) = 1/(1 e^z)$? State whether they are isolated or non-isolated singularities.

OR

10. State Liouville's theorem.

(SECTION : C-DESCRIPTIVE)

(Marks : 50)

Answer the following :

Unit—I

1.	(a)	For any complex number z and w, prove that $ z ^2 w w ^2 z z w$								
		if and only if $z w$ or $z\overline{w}$ 1.	5							
	(b)	Prove that $ z_1 \ z_2 ^2 \ z_1 \ z_2 ^2 \ 2 z_1 ^2 \ 2 z_2 ^2$.	5							
		OR								
2.	(a)	Discuss the representation of complex numbers by points of a sphere (stereographic projection).	5							
	(b)	Show that the equation of a circle in the Argand plane can be put in the form $z\overline{z}$ $b\overline{z}$ $\overline{b}z$ c 0, where <i>c</i> is real and <i>b</i> is a complex constant.	5							
		UNIT—II								
3.	(a)	If $u = x^3 = 3xy^2 = 3x^2 = 3y^2 = 1$, then show that u is harmonic and find the analytic function $u = iv$.	5							
	(b)	If n is real, then show that $r^n(\cos n i\sin n)$ is analytic except when r 0 and n 1.	5							
	OR									
4.	(a)	Show that the function $f(z) = \sqrt{ xy }$ is not analytic at (0, 0) although Cauchy-Riemann equations are satisfied at that point.	5							
178	5	5 [Con	ıtd.							

/178

[Contd.

10×5=50

(b) For an analytic complex function f(z) = u(r,) iv (r,), show that

$$\frac{u}{r} = \frac{1}{r} \frac{v}{r}$$
 and $\frac{u}{r} = r \frac{v}{r}$ 5

UNIT—III

(i)
$$\frac{n!}{n^n} z^n$$

(ii) $1 \frac{1}{n} z^n$

(b) Examine the behaviour of the power series $\frac{1}{n}z^n$ on the circle of convergence. 4

OR

6. (a) For what values of z does the series $\frac{1}{(z^2 - 1)^n}$ is convergent and find its sum.

(b) Show that the power series $a_n z^n$ and its derivative $na_n z^{n-1}$ have same radius of convergence. 5

7. (a) Evaluate by Cauchy integral formula

$$\circ_C \frac{az}{(z^2 \quad 1)(z \quad 1)}$$

where C is the circle |z| = 2.

(b) Evaluate
$$\circ_C \frac{1}{z z_0} dz$$
, where C is the curve $C : |z z_0| r$. 5

6

/178

[Contd.

5

5

OR

8. (a) Evaluate
$$C = \frac{z}{z} \frac{2}{z} dz$$
, where C is the circle $|z| = 2$ from 0 to . 5

(b) Let
$$f(z)$$
 is analytic in a simply connected domain D and C is any closed curve lies inside D . Then prove that

$$C \int f(z) dz = 0$$
 5

9.	State	and	prove	Taylor's	theorem	for	an	analytic	function.	10
OR										

(i)
$$\frac{\cot z}{(z \ a)^2}$$
 at $z \ a$ and z
(ii) $\operatorname{cosec} \frac{1}{z}$ at $z \ 0$

(b) Obtain the Laurent's series expansion of the function

$$\frac{z \quad 3}{z(z^2 \quad z \quad 2)}$$

for the region 1 |z| 2.

 $\star\star\star$

5