MATH/V/CC/06

Student's Copy

2022

(CBCS)

(5th Semester)

MATHEMATICS

SIXTH PAPER

(Real Analysis)

Full Marks: 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION: A-OBJECTIVE)

(*Marks* : 10)

Tick \square the correct answer in the boxes provided :

 $1 \times 10 = 10$

1. Which of the following sets is a neighbourhood of each of its points?

(a) $\frac{1}{n}: n$ N \Box (b)The closed interval [a, b](c)The empty set \Box (d)The set of integers \Box

/177

[Contd.

2. Let be a limit point of a set S and N be any neighbourhood of , then

(a) N S \Box (b) N S is a finite set \Box (c) N S N S \Box (d) N S is an infinite set \Box

3. In the discrete space (X, d), for a = X, the open ball $B_r[a]$

- $\{a\}, \text{ if } r$ 1 (a) X, if r1 $\{a\}, \text{ if } 0 r 1$ (b) X, if r = 1 $\{a\}, \text{ if } 0 r 1$ (C) X, if r = 1 $\{a\}, \text{ if } 0 r 1$ (d) X, if r = 1
- 4. A closed subset of a complete metric space is
 - (a) compact and complete
 (b) compact but not complete
 (c) complete but not compact
 (d) neither compact nor complete

- 5. A function f : D R, D Rⁿ is continuous if and only if
 (a) f ¹(U) is closed in Rⁿ for every closed set U in R □
 (b) f ¹(U) is open in Rⁿ for every closed set U in R □
 (c) f ¹(U) is closed in Rⁿ for every open set U in R □
 (d) f ¹(U) is open in Rⁿ for every set U in R □
- **6.** Let $f : D = R, D = R^n$ be continuous and let K = D be compact. Let $\{G\}$ be an open cover of f(K). Then $\{f^{-1}(G)\}$ is an open cover of
 - (a) D
 - (b) f(D)
 - (c) K
 - (d) f(K) \Box
- **7.** A set of n differentiable functions of n independent variables are functionally related
 - (a) if and only if the Jacobian of the function is zero \Box
 - (b) if and only if the Jacobian of the function is greater than 1 \Box
 - (c) if and only if the Jacobian of the function is negative \Box
 - (d) if and only if the Jacobian of the function is infinite

[Contd.

8. The function

$$f(x, y) = \frac{xy}{x^2 2y^2}, (x, y) = 0$$

0, (x, y) 0

is

- (a) continuous at (0, 0) and both f_x and f_y exist at (0, 0)
- (b) discontinuous at (0, 0) and both f_x and f_y exist at (0, 0)
- (c) continuous at (0, 0) and neither f_x nor f_y exists at (0, 0)
- (d) discontinuous at (0, 0) and neither f_x nor f_y exists at (0, 0)

9. The function f(x, y) |x| |y|

- (a) has an extreme value at (0, 0) but the partial derivatives f_x and f_y do not exist at (0, 0)
- (b) has an extreme value at (0, 0) and both the partial derivatives f_x and f_y exist at (0, 0)
- (c) has no extreme value at (0, 0), even though both the partial derivatives f_x and f_y exist at (0, 0)
- (d) has no extreme value at (0, 0) and the partial derivatives f_x and f_y do not exist at (0, 0)

10. The only stationary point of $f(x, y) = x^2 + y^2 + x + y + xy$ is

(a)
$$\frac{1}{3}$$
, $\frac{1}{3}$ which is a point of minima \Box (b) $\frac{1}{3}$, $\frac{1}{3}$ which is a point of maxima \Box (c) $\frac{1}{3}$, $\frac{1}{3}$ which is a saddle point \Box (d) $\frac{1}{3}$, $\frac{1}{3}$ which is a point of minima \Box

/177

[Contd.

(SECTION : B-SHORT ANSWER)

(Marks: 15)

Answer the following :

3×5=15

UNIT—I

1. Prove that the interior of a set S is the largest open subset of S.

OR

2. Prove that the derived set of a set is closed.

Unit—II

3. Prove that in a metric space, a set is closed if and only if its complement is open.

OR

4. Show that (X, d), where X is the set of real numbers and

$$d(x, y) \quad \left| \frac{x}{y} \right|, \quad x, y \in \mathbb{R}$$

is not a metric space.

5. Examine the continuity of the function

$$f(x, y) = \frac{\sin^{-1}(x - 3y)}{\tan^{-1}(3x - 6y)}, \quad (x, y) = (0, 0)$$

$$1 = -3, \quad (x, y) = (0, 0)$$

at the origin.

OR

6. Examine the continuity of the function

$$f(x, y) = \frac{\frac{x^2 + x\sqrt{y}}{x^2 + y}}{0}, \quad (x, y) = (0, 0)$$

at the origin.

/177

[Contd.

7. If
$$u \ x \ y \ z, v \ x \ y \ z, w \ x^2 \ y^2 \ z^2 \ 2yz$$
, find
$$\frac{(u, v, w)}{(x, y, z)}$$

OR

8. Show by an example that a function which possesses the first-order partial derivatives at a point is not necessarily differentiable thereat.

9. Prove that the function
$$f(x, y) = y^2 - x^2 - x^4$$
 has a minima at the origin.

OR

10. Show that the condition of Young's theorem is not satisfied for the function

$$f(x, y) = \frac{x^2 y^2}{x^2 y^2}, \text{ when } (x, y) \quad (0, 0)$$
$$0, \text{ when } (x, y) \quad (0, 0)$$

at (0, 0) even though $f_{xy}(0, 0) = f_{yx}(0, 0)$.

(SECTION: C-DESCRIPTIVE)

(Marks: 50)

Answer the following :

Unit—I

1.	(a)	State and prove Bolzano-Weierstrass theorem for real line.	6
	(b)	Prove that the intersection of a finite number of open sets is open but this does not hold for infinite sets in general.	4
		OR	
2.	(a)	State and prove Heine-Borel theorem.	7
	(b)	Show that an infinite set with the discrete metric is not compact.	3

6

[Contd.

 $10 \times 5 = 50$

UNIT—II

3.	(a)	Prove that the space \mathbb{R}^n of all ordered <i>n</i> -tuples with the metric <i>d</i> , where	
		$d(x, y) = \frac{\binom{n}{(x_i + y_i)^2}}{\binom{1}{2}}$	
		is a complete metric space.	6
	(b)	Show that every closed sphere in a metric space is closed. OR	4
4.	(a)	Prove that every compact subset of a metric space is closed and bounded but the converse need not be true.	6
	(b)	Prove that every closed subset of a compact metric space is compact.	4
		UNIT—III	
5.	(a)	Define uniform continuity of a function in \mathbb{R}^n . Prove that a function continuous on a compact set is uniformly continuous. 1+5	=6
	(b)	Prove that the image of a compact set under a continuous function is compact.	4
		OR	
6.	(a)	Prove that a function $f: D$ R, D R^n is continuous if and only if	
		$f^{-1}(U)$ is open in R for every open set U in R.	5
	(b)	Let $f: D$ R, D R ⁿ , where D is a convex set. Show that f assumes every value between $f(x)$ and $f(y)$, x, y D.	5
		UNIT—IV	
7.	(a)	If , , are the roots of the equation in t such that $\frac{u}{a \ t} \ \frac{v}{b \ t} \ \frac{w}{c \ t} \ 1$	
		then prove that	
		$\frac{(u, v, w)}{(, ,)} \frac{()()()}{(a \ b)(b \ c)(c \ a)}$	5
/177		7 [Con	ıtd.

- (b) If f_x exists throughout a neighbourhood of a point of (a, b) and f_y(a, b) exists, then prove that for any point (a h, b k) of this neighbourhood f(a h, b k) f(a, b) hf_x(a h, b k) k{f_y(a, b) } where 0 1 and is a function of k which tends to 0 with k.
 - OR

8. (a) Find the directional derivative of $f(x, y) = x^3 - y \sin x$ at the point $0, \frac{1}{2}$ in the direction of $\vec{u} = 3\hat{i} + 4\hat{j}$.

(b) Let $f:D R, D R^2$ and (a, b) D. Show that if one of the partial derivatives exists and is bounded in a neighbourhood of (a, b) and the other exists at (a, b), then the function f is continuous at (a, b).

- **9.** (a) State and prove Young's theorem.
 - *(b)* Show that the conditions of Schwarz's theorem are not satisfied for the function

$$f(x, y) = \begin{array}{cccc} (x^2 & y^2) \log(x^2 & y^2), & x^2 & y^2 & 0 \\ 0 & , & x & y & 0 \end{array}$$

at (0, 0) and $f_{xy}(0, 0) = f_{yx}(0, 0)$.

OR

10. (a) Using Taylor's theorem, show that the expansion of sin(xy) in powers of $(x \ 1)$ and $y \ \frac{1}{2}$ up to and including the second-degree term is

$$1 \quad \frac{1}{8} (x \quad 1)^2 \quad \frac{1}{2} (x \quad 1) \quad y \quad \frac{1}{2} \quad \frac{1}{2} \quad y \quad \frac{1}{2} \qquad 4$$

(b) Examine the following functions for extreme values : 3+3=6

8

(*i*)
$$f(x, y) 4x^2 xy 4y^2 x^3y xy^3 4$$

(*ii*) $f(x, y) x^3 y^3 3x^2 3y^2 9x$
 $\star \star \star$

/177

G23-220

5

5

5

4

1+5=6