MATH/V/CC/05

Student's Copy

2022

(CBCS)

(5th Semester)

MATHEMATICS

FIFTH PAPER

(Computer Oriented Numerical Analysis)

Full Marks: 75

Time : 3 hours

(SECTION: A—OBJECTIVE)

(*Marks* : 10)

Each question carries 1 mark

Put a Tick \square mark against the correct answer in the boxes provided :

- **1.** The value of , where , denote the forward and backward difference operator respectively is
- (a) \Box (b) \Box (c) \Box (d) \Box **2.** If $f(x) ab^{cx}$, then ${}^{2}f(x)$ is equal to $(a) ab^{cx}(b^{ch} 1)$ \Box (b) $(b^{ch} 1)^{2}ab^{cx}$ \Box (c) $(b^{ch} 1)^{2}ab^{x}$ \Box (d) $(b^{ch} 1)^{2}abc^{cx}$ \Box

/176

3. The relation between divided difference and simple difference is given by

(a) $(x_n, \dots, x_2, x_1, x_0) = \frac{ny_0}{n!h^n}$

(b)
$$(x_n, \dots, x_2, x_1, x_0) = \frac{hy_1}{n!h^n}$$

(c)
$$(x_n, \dots, x_2, x_1, x_0) = \frac{hy_0}{(n-1)!h^n}$$

(d) $(x_n, \dots, x_2, x_1, x_0) = \frac{{}^n y_1}{(n-1)!h^n}$

where , denote divided and simple difference.

4. Newton's formula for forward interpolation formula is given by

(a)
$$y \quad y_0 \quad u \quad y_0 \quad \frac{u(u-1)}{\lfloor 2} \quad {}^2y_0 \quad \cdots \text{ where } u \quad \frac{(x-x_n)}{h} \qquad \square$$

(b) $y \quad y_0 \quad u \quad y_0 \quad \frac{u(u-1)}{\lfloor 2} \quad {}^2y_0 \quad \cdots \text{ where } u \quad \frac{(x-x_0)}{h} \qquad \square$
(c) $y \quad y_n \quad u \quad y_n \quad \frac{u(u-1)}{\lfloor 2} \quad {}^2y_n \quad \cdots \text{ where } h \quad \frac{(x-x_n)}{u} \qquad \square$
(d) $y \quad y_0 \quad u \quad y_0 \quad \frac{u(u-1)}{\lfloor 2} \quad {}^2y_0 \quad \cdots \text{ where } h \quad \frac{(x-x_0)}{u} \qquad \square$

5. Indirect method of solving a simultaneous linear equation be represented by
(a) Gauss elimination method

(b) Gauss-Jordan method

- (c) Gauss-Seidel method \Box (d) None of the above \Box
- **6.** Solving the system of simultaneous equations in n unknowns by Crout's method, the method involves :
 - (i) diagonal matrix
 - (ii) upper and lower triangular matrices
 - (iii) forward and backward substitutions
 - (iv) diagonally dominant matrix

Which of the following is true?

(a) (i), (ii) and (iii) \Box (b) (i) and (ii) only \Box (c) (ii) and (iii) only \Box (d) (i) and (iv) only \Box

/176

[Contd.

7.	When numerical integration is applied for the integration of a function of single variable, the method is called						
	(a) trapezoidal rule \Box (b) general quadrature \Box						
	(c) Simpson's 1/3rd rule \Box (d) mechanical quadrature \Box						
8. From general quadrature formula, we can obtain a variate formula by p							
	$n = 1, 2, 3, \cdots$ The best is found for						
	(a) $n \ge 0$ only \square (b) $n \ge 2$ and 6 both \square						
•	(c) $n \ 2$ and 4 both \Box (d) $n \ 1$ only \Box						
9. Which of the following statements is wrong?							
	(a) For solving ordinary differential equation numerically, Euler's method needs h to be very large to get a reasonable accuracy.						
(b) Euler's method is the Runge-Kutta method of first-order. \Box							
	(c) For solving ordinary differential equation numerically, the most reliable and most accurate method is Runge-Kutta method.						
	d) Modified Euler's method is Runge-Kutta method of second-order. \Box						
10.	For solving ordinary differential equation numerically, which among the following is applied if successive integration can be obtained easily?						
	(a) Euler's method \Box (b) Taylor's method \Box						
	(c) Picard's method (d) Runge-Kutta method						
(SECTION : B—SHORT ANSWER)							
	(<i>Marks</i> : 15)						
Each question carries 3 marks							
Answer the following :							
I JNITI							
1.	Derive the relation ${}^{2}[f(x \ 2h)] {}^{2}f(x)$, where and are the backward and						
	forward difference operator respectively.						

OR

2. Write Newton-Raphson formula to find the cube root of N. Hence find the cube root of 10.

[Contd.

UNIT—II

3. Find the divided difference of [u, v, w] for the function $f(a) = \frac{1}{a^2}$.

OR

4. Show that the divided differences are independent of the order of arguments i.e., (x_0, x_1) (x_1, x_0) . Is it true for more than two arguments also?

UNIT—III

5. Solve the given equation by Gauss-Jordan method :

х

OR

6. Reduce the system $3x \ 9y \ 2z \ 10$; $4x \ 2y \ 13z \ 19$; $4x \ 2y \ z \ 3$ into diagonally dominant and write the corresponding system of equation.

UNIT-IV

7. Find the value of $\log 2^{\frac{1}{3}}$ from $\frac{1}{0} \frac{x^2}{1 x^3} dx$ using Simpson's $\frac{1}{3}$ rd rule with h = 0.25.

OR

8. Obtain the formula for the first-order derivatives $\frac{dy}{dx}$ or f(x) for numerical differentiation.

UNIT-V

9. Using Euler's method, solve $\frac{dy}{dx} = x + y$ with y(0) = 1 and find y(0 = 4) by taking h = 0 = 2.

OR

10. Find the value of $y(0 \ 1)$ by Picard's method, given $\frac{dy}{dx} = \frac{y}{y} \frac{x}{x}$, y(0) = 1.

/176

[Contd.

(SECTION : C-DESCRIPTIVE)

(*Marks* : 50)

Answer the following :

UNIT—I

1. (a) Find the function whose first difference is $x^3 \quad 3x^2 \quad 5x \quad 12$. 5 (b) Use the method of successive iteration to find the root of $3x \quad \log_{10} x \quad 6.$

OR

2. (a) Write the algorithm of Regula-Falsi method for finding the root of the equation f(x) = 0.

(b) If
$$y = \frac{1}{x(x-3)(x-6)}$$
, then prove that ${}^{2}y = \frac{108}{x(x-3)(x-6)(x-9)(x-12)}$. 5

3. (a) Find the cubic polynomial from the following data using Newton's divided difference formula :

x	0	1	2	5
f(x)	2	3	12	147

(b) Obtain Newton's backward interpolation formula for interpolation with equal intervals of the argument.

OR

4. (a) Interpolate the following function as a quadratic polynomial using Lagrange's interpolation formula, and find f(10):

x	<i>x</i> 1		15
y	168	192	336

(b) Obtain Newton's divided difference interpolation formula for non-equal intervals of the argument.

UNIT—III

5. (a) Solve the following system of equations by Gaussian elimination method : 4

> $3x \ y \ 2z \ 3, \ 2x \ 3y \ z$ 3, x = 2yz 4

(b) Solve the following system by Gauss-Seidel method :

 $2x \ y \ 3; \ 2x \ 3y \ 5$

5

[Contd.

5

5

10×5=50

4

6

4

6

6

OR

- **6.** (a) Solve the following system of equation by Crout's method $x \ y \ z \ 1$, $3x \ y \ 3z \ 5$ and $x \ 2y \ 5z \ 10$.
 - *(b)* Write an algorithm of Gauss elimination method for solving system of simultaneous linear equation.

Unit—IV

- 7. (a) Evaluate $\int_{0}^{1} \frac{dx}{1-x^2}$ using trapezoidal rule with h = 0 2. Hence determine the value of .
 - (b) Find the second derivative of f(x) at x = 3 0 from the following table :

x	3.0	3.2	3.4	3.6	3.8	4.0
y	14.000	10.032	5.296	0.256	6.672	14.000

^		1	
L	,	J	N

8. (a) Find the first derivative of f(x) at x = 0.4 from the following table : 4

x	0.1	0.2	0.3	0.4
y	1.10517	1.22140	1.34986	1.49182

(b) Obtain the formula for Simpson's one-third rule for numerical integration.

UNIT-V

9. (a) Using Taylor's method, find $y(0 \ 1)$ correct to 3 decimal places from

$$\frac{dy}{dx} = 2xy \quad 1, y_0 \quad 0 \qquad \qquad 4$$

(b) Compute $y(0 \ 1)$ by Runge-Kutta method of fourth-order for the differential equation

$$\frac{dy}{dx} \quad xy \quad y^2, \quad y(0) \quad 1 \qquad \qquad 6$$
OR

10. Solve
$$\frac{dy}{dx} = y$$
 with $y(0) = 1$ by using Milne's method $x = 0$ 1 to $x = 2$ 7 with $h = 0$ 3.

* * *

6

G23-220

10

6

4

4

6

6

/176