CHEM/V/CC/11

Student's Copy

2022

(CBCS)

(5th Semester)

CHEMISTRY

SIXTH PAPER

(Organic Chemistry—II)

Full Marks: 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

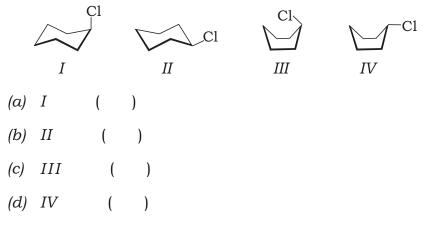
(SECTION: A—OBJECTIVE)

(Marks: 10)

Tick (\checkmark) the correct answer in the brackets provided :

1×10=10

- **1.** If any two atoms or groups bonded to a chiral carbon atom are interchanged on Fischer projection formula, the resulting isomer is called
 - (a) enantiomers ()
 - (b) diastereomers ()
 - (c) racemates ()
 - (d) metamers ()


/165

2. Which type of isomerism is given by $(CH_3)_2C = CH - CH(CH_3) - COOH?$

- (a) Geometrical isomerism ()
- (b) Optical isomerism ()
- (c) Tautomerism ()
- (*d*) Both (*a*) and (*b*) ()
- 3. The stability of conformation of cyclohexane decreases in the order

(a)	chair	half chair	boat	twist boat	()
(b)	chair	boat twis	t boat	half chair	()
(c)	chair	twist boat	boat	half chair	()
(d)	boat	twist boat	chair	half chair	()

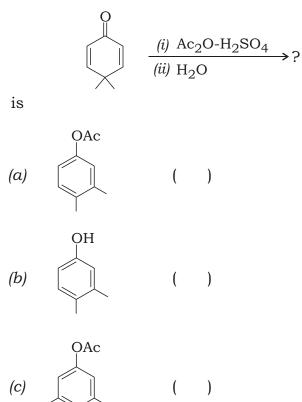
4. The most stable conformation of 1-chlorocyclohexane is

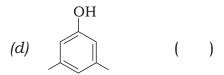
5. Which one of the following has least resonance energy?

- (a) Pyrrole ()
- *(b)* Furan ()
- (c) Thiophene ()
- (d) Pyridine ()

/165

6. Pyridine is a stronger base than pyrrole because


(a)	pyrrole is only a five-membered heterocycles ()		
(b)	lone pair of N-atom in pyridine is involved in delocalization	()
(c)	lone pair of N-atom in pyrrole is involved in delocalization	()
(d)	N-atom in pyrrole is sp^2 -hybridized ()		


7. A six-membered cyclic transition state is observed in the mechanism of

- (a) Clemmensen reduction ()
- (b) Perkin reaction ()
- (c) benzoin condensation ()
- (d) aldol condensation ()
- **8.** The reactivity of methylene group (—CH $_2\,$) in active methylene compound is due to
 - (a) +I effect ()
 - (b) -I effect ()
 - (c) both –I and –R effects ()
 - (d) +R effect ()

/165

9. The product obtained from the following reaction

- **10.** The major product in Friedel-Crafts alkylation reaction using branched alkyl halide is primarily determined by
 - (a) stability of carbanion ()
 - (b) stability of carbocation ()
 - (c) reactivity of the substrate ()
 - (d) nature of solvent ()

(SECTION : B-SHORT ANSWER)

(Marks: 15)

Answer the following :

 $3 \times 5 = 15$

Unit—I

1. Write a short note on geometrical isomerism in oximes.

OR

2. Explain the centre of symmetry by taking suitable example.

Unit—II

3. Differentiate between conformations and configurations.

OR

4. Explain 1,3-diaxial interactions in the conformations of cyclohexane.

Unit—III

5. Pyridine undergoes electrophilic substitution at C-3, C-2 and C-4. Explain.

OR

6. Complete the following reaction :

$$HOCH_2CH(OH)CH_2OH \xrightarrow{\text{conc.H}_2SO_4} A \xrightarrow{\text{NH}_2} B \xrightarrow{\text{C}_6H_5NO_2} [O] \xrightarrow{\text{C}_6H_5NO_2} C$$

UNIT—IV

7. Differentiate between resonance and tautomerism.

OR

8. "The -hydrogen atom of carbonyl compounds is acidic." Explain by taking suitable examples.

UNIT-V

9. Complete the following reaction :

$$CH_3Br + PPh_3 \longrightarrow A \xrightarrow{PhLi} B \xrightarrow{CH_3COCH_3} C + D$$

OR

10. Write B_{AC}^2 mechanism for the hydrolysis of an ester.

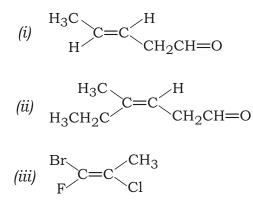
(SECTION : C-DESCRIPTIVE)

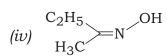
(Marks: 50)

Answer the following :

10×5=50

UNIT-I


- 1. (a) What are diastereomers? Write two properties of diastereomers. 3
 - (b) Assign the R- and S-configuration of the following : $1 \times 4 = 4$ $_{|}^{CH_3}$


$$(i) \quad \begin{array}{c} H \longrightarrow Br \\ Br \longrightarrow H \\ CH_3 \\ (ii) \quad H \longrightarrow OH \\ COOH \\ (iii) \quad Ph \longrightarrow H \\ \end{array}$$

(c) What do you mean by inversion of configuration? Explain how inversion of configuration can occur under $S_{\rm N}2$ reaction. 3

/165

- **2.** (a) Write short notes on the following : $2 \times 2=4$
 - (i) Resolution of enantiomers
 - (ii) Structural isomerism
 - (b) Assign E or Z or syn- or anti-notation to the following : $1 \times 4 = 4$

(c) What is optical activity? How do you account for the lack of optical activity in *meso*-compounds?2

UNIT—II

- **3.** (a) Draw the Newman and Sawhorse conformations of ethane with its potential energy diagram. Explain their stability. 3+2=5
 - (b) Draw the axial and equatorial bonds in boat and chair conformations of cyclohexane.
 - (c) Draw the most stable conformation of t-butyl cyclohexane showing all the axial and equatorial hydrogens.2

4.	(a)	Why is the axial methyl cyclohexane less stable than equatorial methyl cyclohexane?	2		
	(b)	Draw and explain all the possible conformations of n -butane. Draw their potential energy diagram and explain their stability. $3+2=$			
	(c)	Explain the following terms : 1×3 (i) Steric effect	=3		
		(ii) Dipole-dipole interactions(iii) Angle strain			

Unit—III

5. (a) Complete the following reactions (mechanism not required) : 1×3=3

(i)
$$(C_5H_8O_4)_n \xrightarrow{H_2O/H} CaO(350^{\circ}C) ?$$

(ii) $(C_5H_8O_4)_n \xrightarrow{H_2O/H} CaO(350^{\circ}C) ?$

(b) Complete the following reaction with suitable mechanism :

$$\underset{H}{\swarrow} + \operatorname{Aq.K_2CO_3} \longrightarrow ?$$

(c) Write down the reaction with suitable mechanism for the synthesis of isoquinoline by Bischler-Napieralski method.

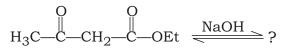
/165

[Contd.

3

6. (a) Complete the following reaction with suitable mechanism : 4

$$\begin{array}{c}
 & \begin{array}{c}
 & H_{3}C \\
 & & \end{array} & \begin{array}{c}
 & LnCl_{2} \\
 & & \end{array} & \begin{array}{c}
 & \\
 & & \end{array} & \begin{array}{c}
 & \\
 & & \\
 & & \end{array} & \begin{array}{c}
 & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 &$$


UNIT-IV

7. (a) Complete the following reactions giving suitable mechanisms and name the reactions : $3\frac{1}{2}\times2=7$

(i)
$$(i) \xrightarrow{O}_{H} \xrightarrow{KCN, EtOH}_{H_2O}$$
?

(ii)
$$\stackrel{O}{\longrightarrow} \frac{Zn/Hg}{conc. HCl}$$
?

(b) What are active methylene compounds? Write the product of the following reaction :

/165

8. (a) Complete the following reactions giving suitable mechanisms and name the reactions : $3\frac{1}{2}\times2=7$

(i)
$$\xrightarrow{O}$$
 dil.NaOH?

(ii)
$$(ii) \xrightarrow[O]{O}{O}{O}{H} \xrightarrow[O]{O}{O}{H}$$

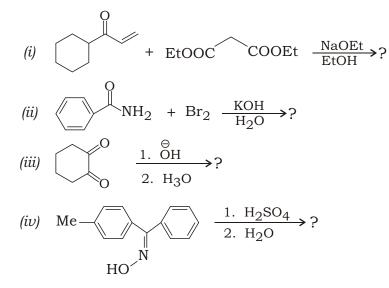
(b) Write and explain Perkin reaction.

UNIT-V

9. (a) Write the products of the following reactions with suitable mechanisms (any *three*) : 3×3=9

(i)
$$H + HOOC COOH \xrightarrow{Et_2NH}$$
?
(ii) $O + BrCH_2COOEt \xrightarrow{1. Zn/ether}$?
(iii) $O + BrCH_2COOEt \xrightarrow{1. Zn/ether}$?
(iii) $O + BrCH_2COOEt \xrightarrow{1. Zn/ether}$?
(iii) $O + BrCH_2COOEt \xrightarrow{1. Zn/ether}$?
(iv) $HCH_2COOEt \xrightarrow{1. Zn/ether}$?

(b) What are ketals?


[Contd.

1

/165

3

10. (*a*) Write the products of the following reactions with suitable mechanisms (any *three*) : 3×3=9

(b) What are carbanions?

1

